Fractal dimension of the strange attractor of the bouncing ball circuit

B. K. Clark, R. F. Martin, Jr.,¥ R. J. Moore,” and K. E. Jesse
Department of Physics, Illinois State University, Normal, lllinois 61790-4560

(Received 17 December 1993; accepted 22 August 1994)

We address the problem of distinguishing regular, chaotic, and random behavior using an electronic
circuit modeling of a ball bouncing on an oscillating table. We calculate the correlation dimension
of the system from time series data taken from the circuit, and show that this system seems
amenable to correlation dimension analysis. In particular we find dimensions of 1.07 for regular data
and 1.7 for chaotic data, while random data give no finite dimension. We conclude that the system
apparently has a chaotic attractor of low dimension. The experiment and data analysis make a useful
module to introduce advanced undergraduate students to nonlinear systems. © 1995 American

Association of Physics Teachers.

I. INTRODUCTION

In the last few decades nonlinear physical systems have
become a major object of research in physics and other sci-
ences. New techniques, many of them computational, have
beent developed to study nonlinear systems. An important
goal for physics education is to introduce physics majors to
this exciting new field and the new techniques developed for
analyzing such systems. With this idea in mind, we have
begun development of instructional modules for upper divi-
sion physics courses dealing with nonlinear systems. This
effort is closely associated with our department’s evolving
effort to integrate computat10na1 techniques into the physics
major curriculum.” In this paper we present a model in which
students investigate a nonlinear circuit. They analyze the
data with elementary techniques of time series analysis and
nonlinear dynamics.

Our main goals in developing this project are to provide a
simple, real-world system for students to study as an experi-
ment and to analyze with standard computational methods.
In particular, we would like students to be able to discrimi-
nate between deterministic chaotic motion, regular motion,
and nondeterministic noise. The system we chose is basically
the circuit developed by Zimmermann et al.” to simulate a
ball bouncing on an oscillating table. The circuit can be de-
scribed using the dynamical variables position and velocity
and a time-dependent force. It is readily constructed from
standard elements, and it is not difficult for students to un-
derstand. Students measure the position and velocity of the
simulated ball as functions of time. The data are digitized
and recorded with a computer based on an Intel 80386-SX
microprocessor and equipped with an analog to digital con-
verter.

Discrete samplings of the time series representing the po-
sitions, x(¢), and velocities, v(¢), of the ball are recorded.
The time series are analyzed with several different methods,
that include visual inspection of x(¢) and v(¢), phase por-
traits, Fourier analysis, and the computation of correlation
dimensions. As shown by Zimmermann et al.® the system
exhibits regular (periodic and quasiperiodic) behavior and
chaotic behavior, depending on the values of the circuit pa-
rameters. Often visudl inspection appears to discriminate be-
tween the two classes of motion. Further discrimination be-
tween regular and chaotic motion can be obtained by plotting
the phase portrait [x(¢) vs v(¢)] of a trajectory (also called
an orbit) in its position-velocity phase space. Using these
methods we have produced parameter space “maps” show-
ing what types of apparent behavior to expect for a wide
range of parameter values.
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The eye can sometimes be fooled in distinguishing be-
tween regular motion with multiple frequency components
(multiple periodic) and chaotic motion, so further discrimi-
nation is needed. We used the power spectrum for the next
level of discrimination. The power spectrum of the time se-
ries representing periodic motion should show discrete fre-
quencies, while chaotic motion should have continuous
bands of frequencies. Simple numerical techniques are em-
ployed to compute the power spectrum with fast Fourier
transforms. The power spectrum alone is still not a sufficient
discriminator, since multiple periodic data can emulate con-
tinuous bands, for example. Moreover, noise also has a con-
tinvous frequency distribution, so we need a method to dis-
criminate deterministic chaos from noise as well as from
regular motion. '

One technique used to distinguish between regular motion,
chaotic motion, and nondeterministic noise in a time series
of data representing a trajectory is to determine the correla-
tion dimension of the physical attractor underlying the time
series. Physical systems are classified into Hamiltonian sys-
tems and dissipative systems in the nonlinear dynamics lit-
erature. Hamiltonian systems are governed by Hamilton’s
equations without dissipation, while dissipative systems in-
volve physical dissipative mechanisms such as friction, vis-
cosity, and electrical resistance. Dissipative systems are char-
acterized by “attractors” that are subsets of the system’s
phase space into which orbits are attracted asymptotically in
time. Attractors can be periodic and regular or chaotic (often
called ““strange attractors™). Regular attractors form subsets
of integer dimension in the full phase space, while chaotic
attractors typically have noninteger, or fractal dimensions.
We have used the numerical technique ‘of Grassberger and
Procaccia® (these articles will be referred to as GP through-
out this paper) for computmg the dimension of an attractor.
Bergé et al.* and Hilborn® also have excellent discussions of
the technique. Application of this method to real experimen-
tal data is still somewhat controversial, and one of our goals
is to see how well this technique works for our system. We
show in Sec. III that the method does appear to distinguish
between the three types of behavior. We discuss some subtle-
ties in interpreting the results in Sec. IV.

The instructional module presented here serves several
purposes. First, it is a practical introduction to nonlinear dy-
namics and chaotic behavior, helping students to begin de-
veloping their intuition regarding such systems. Second, the
students are introduced to experimental techniques in data
acquisition and computational techniques of data analysis,
including the calculation of the power spectrum and correla-
tion dimension. These techniques are currently used for data
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Fig. 1. Circuit diagram for bouncing ball circuit. R, and all R and 10 k2. R,
is a 1 k€) resistor in series with a 2.5 k{) potentiometer. R; is a 1 MQ}
resistor. C;, C;, and C are 0.05 uF. The rectifier in the dashed box is a
precision rectifier based on IC4 as shown at the bottom of the figure. Each
integrated circuit is an LF356. Note that C;, C, Ry, R; and the negative
input of IC1 all have a common point of contact.

analysis in many branches of science and engineering. This
module is suitable for use in a variety of courses, including
an advanced laboratory, an electronic circuits course, and a
course in nonlinear science.

The experimental setup, basic measurements, and qualita-
tive descriptions of the circuit behavior are described in Sec.
II. The quantitative data analysis methods and results are
presented in Sec. III, and discussion and conclusions are in-
cluded in Sec. IV.

II. THE EXPERIMENT

In the past 20 years the chaotic dynamlc Propernes of the
bouncing ball have been of great interest.5~'! The electronic
circuit that we used to simulate a ball bouncing on a moving
table is baswally the same as the one described by Zimmer-
mann et al.? The circuit diagram is shown in Fig. 1. Our
analysis of the circuit is somewhat different than their analy-
sis. The core of this circuit consists of three LF356 JFET
operational amplifiers. IC1 and IC2 are operational amplifi-
ers connected as integrators in series followed by an opera-
tional amplifier, IC3, used as a unity gain adder. The output
of the adder is fed back to the first integrator through IC4,
that is used as a prec151on rectifier.

Zimmermann et al.2 have established that — V is analo-
gous to the oscillating table position on which the mechani-
cal ball bounces. V; serves as the driving force for a forced
damped harmonic oscillator, and it is a sine wave provided
by a function generator. They also showed that V, is analo-
gous to the position of the ball above the zero displacement
position of the table. IC2 integrates the input, V., which is
proportional to the velocity of the ball. The actual velocity is
-~V /(R,C,). The output of IC3 is the inverted sum of Vr
and V,. When V,, is positive, the precision diode conducts
and the voltage at s1 is equal to V, so

Vsl=Va=—Vb'_VT—:[l/(RZCZ)]f Vdt=Vy. (1)
The phase inversion causes the voltage at V to represent the
negative of the ball velocity. Consequently, V, represents the

position of the ball.
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The relationship between the input and output voltages of
IC1 can be written as

Ry in our circuit is a 1 k() resistor in series with a 2.5 k()
variable resistor. The value of Ry is analogous to the coeffi-
cient of restitution of the ball, which we can vary. Vg isa 1.4
V battery, which simulates part of a constant acceleration.
When Eq. (1) and its derivative are submitted into Eq. (2),
with V; =V, one obtains

dV,/dt+V, [T+ w} f V.dt

=V /(R,C)+(C;/C)dVy/dt+Vy/(R,C), 3)

where 7=R,C,C/C; and wp=(1/1R;C,)""*. This is Eq. (12)
in Zimmermann et al.? but they neglected a C in the first two
terms on the right-hand side of the equation. As they state,
this equation is that of a forced damped harmonic oscillator
subject to a constant force and two time-dependent forces.
The constant force comes from the term involving Vy, and
the time-dependent forces are from the terms with V; and
dVy/de. As written in Eq. (3) each of the three terms on the
right-hand side are analogous to accelerations. The noncon-
ducting state of the precision diode circuit results when V,
goes negative. The effect of this condition in the circuit can
be understood by allowing Ry/—% and C;—0 in Eq. (3).
Here, the acceleration terms involving VT, dvi/dt, V /T,
and } all vanish. Equation (3) reduces to

dV,/dt=Vg/(R,C). (4)

This equation describes uniformly accelerated motion in
which V/(R,;C) is the analog of the constant acceleration
due to gravity to which the ball is subject in free fall. When
V, is positive, Eq. (3) describes the acceleration forces on
the ball when it is in contact with the table.

V, and V_ are connected to the inputs of an analog to
digital converter that converts each value approximately
1000 times per second. The converted values are recorded
with an Intel 80386-SX based personal computer. The results
can then be analyzed on the personal computer or transported
to a workstation for analysis. An oscilloscope is also used to
monitor V, and V.

This circuit can exhibit periodic, chaotic, and a borderline
periodic—chaotic behavior. Figure 2 shows segments of time
series of data for a periodic case and a chaotic case. Although
the eye can easily detect a difference between these plots, a
phase space plot of x(¢) vs v(#) (a “phase portrait”) shows
the characteristics of the motion more clearly, as can be seen
from Fig. 3. These phase portraits are equivalent to what is
observable on the oscilloscope by plotting the ball velocity
on the vertical axis and the ball position on the horizontal
axis. The trajectory of the regular orbit [Fig. 3(a)] is not a
well-defined narrow curve as might be expected, but there is
broadening of the periodic orbit due to noise inherent in the
experimental setup. One component of noise comes from the
circuit itself, and another component is caused by fluctua-
tions in the driving frequency. The chaotic orbit shown in
Fig. 3(b) clearly represents more complex dynamics than is
depicted in Fig. 3(a), but the finite width of the periodic orbit
will not always allow visual discrimination of orbit types.

Nevertheless, we used visual discrimination as a first pass
at organizing the data. The frequency and amplitude of Vr
were systematically varied for each selected value of Ry. The

Clark et al. 158



P T T N S T S S SR

2501.4 PTE N SR

200

150

100

Position

50

LA S e AL S L S B A L B BB

-50
100 150 200 250
(a) Time (ms)

w
(=]
o

500 ?
400?‘
sooi

200 -

Position

100

<o
T W

-
(=]
o

|

n

-200
300 350 400 450 500
(b) Time (ms)

Fig. 2. Segments of position time series obtained for regular and chaotic
time series. A segment of a regular time series is shown in (a) where the
table frequency was 55 Hz, the table amplitude was 0.85 V, and the value of
R, was 1500 ). A segment of a chaotic time series is shown in (b) where the
table frequency was 66 Hz, the table amplitude was 1.25 V, and the value of
R was 1500 Q.

resultant circuit behavior was classified as periodic, chaotic,
or borderline based on the phase space portrait dlsplayed on
the oscilloscope as described by Zimmermann et al.? The
results are shown in Fig. 4. Figure 4(a) shows the map ob-
tained for R;=1095 (). There is a clear distinction between
periodic reglons and apparent chaotic regions as the fre-
quency of V7 is varied at small amplitudes. The regions are
compressed and intertwined at larger values of V. The cha-
otic behavior begins at lower frequencies as the amplitude is
increased. When the value of R was increased to 1500
[Fig. 4(b)] the regions of chaotic and periodic behavior be-
came more intertwined. The regions were intertwined over a
large frequency range at low amplitude at R,=1800 and
2500 Q [Figs. 4(c) and 4(d) ]. R;=1500 () prov1ded reason-
ably distinct regions to quantlfy the differences in behavior
between the chaotic and periodic regions.

ITI. DATA ANALYSIS

A second step in determining whether the position and
velocity trajectories are periodic or chaotic is to calculate the
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Fig. 3. Phase space plots of velocity vs position for (a) the regular time
series and (b) the chaotic time series. The parameters are the same for this

plot as for Fig, 2.

power spectrum. The power spectrum for periodic, random
(from a random number generator), and chaotic time series
were calculated using the fast Fourier transform algorithm in
Press et al.'? on an IBM RS/6000. The results are shown in
Fig. 5. The periodic time series [Fig. 5(a)] shows a sequence
of peaks at 55, 110, 165, 220, 275, 330, 385, and 440 Hz.
The frequency of Vy is 55 Hz. A second set of peaks is
present to the low frequency side of many of the harmonics,
but they are several orders of magnitude weaker. We do not
understand the source of this set of peaks, but clearly their
separation is nearly the same as for the first set of peaks.
The power spectrum of the chaotic time series [Fig. 5(b)]
shows less structure. The peak at 66 Hz corresponds to the
driving frequency of V5, and harmonics at 132 and 198 Hz
are weakly visible. There appear to be two broad maxima
near 22 and 42 Hz (possibly subharmonics) and another
maximum near 110 Hz that is several orders of magnitude
weaker, but the exact origin of these maxima is unclear.
Thus, while the spectrum shows some continuous bands, it
also has some regular structure, implying that this is not a
decisive method to distinguish chaos from regular motion.
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Fig. 4. Parameter maps showing regions of periodic behavior, chaotic behavior, and both. Ry was 1095 ) in (a), 1500 Q in (b), 1800 € in (c), and 2500 O
in (d). In each case, an oscilloscope is operated with its channel 1 as the x axis and its channel 2 as the y axis. V, is connected to channel 1 and V), is connected
to channel 2. The resulting patterns for each combination of frequency, table amplitude, and value of R are similar to those shown in Fig. 3, but rotated 90°.
Each pattern is classified as periodic if it is similar to Fig. 3(a), chaotic if it is similar to Fig. 3(b), and both if it displays elements of both Figs. 3(a) and 3(b).

To go beyond power spectral analysis, the correlation di-
mensions of the chaotic and periodic trajectories can be cal-
culated according to the methods of GP. The basic idea is as
follows (excellent discussions in more depth can be found in
Refs. 4 and 5): one imagines embedding the attractor, as
exemplified by the experimental orbit, in a space of dimen-
sion, n. We then ask the question: how does the number of
points, N(r), enclosed in a sphere of dimension, n, depend
on the radius, r, of the sphere? In general, one expects
N(r)~r"; e.g., if the orbit is a simple curve »=1, no matter
what the dimension of the sphere. Similarly, if the attractor is
uniformly distributed on a plane, v=2 for sphere dimensions
greater than 2. Alternatively, v should increase linearly as n
increases for random noise with an infinite number of de-
grees of freedom, without reaching a limiting value. Deter-
ministic chaos will have a finite but noninteger value for v,
i.e., v should reach a noninteger limit as the embedding di-
mension n increases. This limit gives the (fractal) dimension
of the attractor.

The first step in calculating the correlation dimension with
a single time series is to “reconstruct’ the phase space in the
embedding dimension, n, i.e., map the time series of points
into N vectors of dimension, n, according to

X;={x(t)),x(t;+T), ... x[t;+(n—1)T]}, (5)
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where T is the delay time between components. In practice T
is just an integer spacing between components (e.g.,
X;={x1,%5,%o} is a valid vector in three-dimensional space).
Additional  vectors are similarly picked (e.g.,
X,={x5,x¢,%19} and so on). Once all of the vectors for a
given dimension have been established, one defines the cor-
relation integral sum as

N-5 N
CIN,N=(2IN) 2 2 Or-|X—X]), (6)
i=1 j=i+5

where O is the step function, ie., ®(y)=1 if y>0 and
O(y)=0 otherwise. Note that the summation essentially
counts the number of points within a sphere of radius r.
Hence, if C(N,r) is calculated for a range of r and the slope
of log C(N,r) vs log r is plotted against n, then the correla-
tion dimension is the value of the slope of this plot when it
reaches a plateau. Embedding dimensions up to at least
2D+ 1 should be used to obtain a reliable correlation dimen-
sion of D.!> Again, this is not a strong limitation for our data
sets.

Although this circuit allows easy measurement of the two
relevant dynamical variables, this is not generally true in
more complex systems. Often one has data from one physi-
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Fig. 5. Power spectrum of the same periodic and chaotic time series shown
in Figs. 2 and 3. The power spectrum for the periodic series is shown in (a)
and the power spectrum for the chaotic series is shown in (b).

cal property of a system which may have many dynamical
variables (or an infinite number as in continuous systems).
Thus, we prefer to apply the GP method to only one time
series, the position data, rather than computing the correla-
tion dimension directly from the two time series. To obtain a
dimension, D, for a strange attractor one needs at least 10°/2
data points in the time series.'* With this circuit it is easy to
obtain long time series, so treating the position series alone is
not a great restriction. For example, with 15 000 points from
a position time series (recorded at a rate of approximately 1
kHz for all time series and a driving frequency of 55 Hz for
the chaotic time series) we can reliably study a chaotic at-
tractor with a dimension of no more than D =8. This is suf-
ficient for our purposes.

Figure 6(a) shows plots of the value of log C(N,r) vs
log r for embedding dimensions 1-7, from upper left to
lower right, for 15 000 vectors from the chaotic time series.
The correlation dimension for each curve is obtained as the
slope of the linear portion of the curve. These linear seg-
ments as well as their calculated slopes are shown in Fig.
6(b) for the chaotic data. The slopes begin at 0.96 for an
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embedding dimension of 1, increase to 1.7 for an embedding
dimension of 4, and remain constant at about 1.7 as the em-
bedding dimension is increased to 7. For periodic data, the
slopes quickly reach a constant value of 1.07, as shown in
Fig. 6(c). Finally, the slopes for the nondeterministic noise
continue to increase as the embedding dimension is in-
creased. This is shown in Fig. 6(d).

Figure 6(e) shows a summary plot of the slopes of the
log C(N,r) vs log r plots for the periodic, chaotic, and non-
deterministic noise as a function of embedding dimension.
These are the results of Figs. 6(b)-6(d) in a format which
highlights the plateau in the slopes shown by the periodic
and chaotic time series. From this it appears that a clear
distinction can be made between orbit types. That is, we
expect the periodic orbit to have integer dimension 1.00,
which is consistent with our value of 1.07. The small differ-
ence is attributable to noise, as will be discussed presently.
The chaotic orbit yields a noninteger dimension 1.7, higher
than the regular orbit but sharply different from random
noise. The validity and utility of these results are discussed
in the next section.

IV. DISCUSSION AND CONCLUSION

We saw in the last section that the bouncing ball circuit
leads to time series that can be fruitfully analyzed. We ob-
served a definite difference between orbits appearing regular
and those appearing chaotic using each of several tech-
niques: visual inspection, phase portraits, power spectra, and
correlation dimension. We estimated a dimension of 1.07 for
the periodic data and 1.7 for the chaotic series. It is tempting
to conclude immediately that we have a definitive method for
discrimination between regular and chaotic motion. How-
ever, as mentioned in Sec. I, care must be taken in interpret-
ing these results.

First, not all the observations are as clean as those pre-
sented here. For this analysis we purposely chose parameter
values where a reasonably clear distinction in orbit type
could be made visually (see Sec. IT). For high values of R f
and V; small changes in resistance could change the orbit
type, implying close spacing between chaotic and regular
regions. Moreover, for some parameter values, time series
ensued which appeared to change back and forth from regu-
lar to chaotic behavior in an unpredictable way. This behav-
ior shows either that the circuit parameters are not perfectly
stable, or that some source of noise is perturbing the system
from one attracting region to another. For such cases, where
the measurement itself is difficult, we expect the data analy-
sis techniques to be less useful. For example, it is unclear
how to interpret the correlation dimension of a time series
that changes between periodic and chaotic motion.

There are also limitations to the data analysis techniques,
even when applied to good data. The difficulty in distin-

- guishing between multiple periodic, chaotic, and noisy sig-

nals with Fourier techniques is well known; indeed, that is
why other methods have been developed. The difficulties of
the GP method are less well understood. We have already
mentioned the logarithmic dependence on number of data
points in Sec. II, so as a minimum condition, one needs to be
sure to obtain sufficient measurements to utilize the tech-
nique. Less well understood is the effect of the free param-
eter T in reconstructing the attractor for the calculation of the
correlation dimension. It appears to be a bit of an art to
choose a “suitable” value of T for a given set of data. For
nonlinear maps such as Henon’s map (see Bergg, et al., Ref.
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15, for example) small values of T give the best correspon-
dence between the actual attractor and the reconstructed at-
tractor, while for real data one may need a larger value of T
to avoid autocorrelation between the data points.'® Liebert
and Schuster!” present a more systematic way of choosing T.

Since we are trying to distinguish between noise and de-
terministic chaos, noise caused by power supply fluctuations
and the resolution of the analog to digital converter cause
problems. In our circuit we found that noise smeared out the
regular orbits somewhat in phase space. One expects that
noise would cause the log C(N,r) in Fig. 6(b) to increase
more with log r [viz. Fig. 6(d)] and turn over at an artificially
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Fig. 6. Shows plots of the value of log C(N,r) vs log r for embedding
dimensions 1-7 for 15 000 vectors from the chaotic time series. The results
for the chaotic series are shown in both (a) and (b). The results for the
periodic and nondeterministic noise are shown in (c) and (d), respectively. A
summary plot of the slopes of the log C(N,r) vs log r plots for the periodic,
chaotic, and nondeterministic noise as a function of embedding dimension
are shown in (¢). These are the slopes of the lines in (b)—(d) that shows the
plateau in the slopes shown by the periodic and chaotic time series. The
chaotic and periodic time series are the same series used for Figs. 2, 3,
and S.

high value, thus overestimating the correlation dimension.
Our result of 1.07 for the regular orbit correlation dimension
is consistent with this view (one would expect 1.00 for a true
periodic orbit). Various techniques have been tried to deal
with noise when applying the GP method, e.g., the singular

spectrum analysis.'® Suffice it to say there is no clear solu-
tion at this point.

A more subtle problem is the basic applicability of the
method. It has been shown that certain types of colored
noise’® can result in finite correlation dimensions (i.e., they
can emulate deterministic chaos), unlike our noise result in
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Fig. 6(d). Also, systems with long autocorrelatlon times give
spurious results with the GP algorithm.” Thus, the results of
GP analysis must (for this and other reasons) remain nonde-
finitive. Other techniques, typically more involved, have
been developed to assist in the discrimination between regu-
lar and chaotic motion, a well- known one being the compu-
tation of the Lyapunov exponents ! Other methods are cur-
rently being developed.?

Our results indicate that the GP method may work well
with the bouncing ball circuit, in the parameter regime stud-
ied. In particular, for application in an advanced undergradu-
ate course, we feel the results are good enough to introduce
students to the experimental study of nonlinear systems (with
all its pitfalls!). Interested students could probe further using
Lyapunov exponent or noise-reduction techniques.

Finally, it is worth mentioning why the correlation dimen-
sion is useful for strange attractors. If one can convincingly
show that the system has a strange attractor, then the corre-
lation dimension, D, represents the minimum number of
variables necessary to describe the attractor. More precisely,
the number of degrees of freedom needed to describe the
system is between D and 2D+1.1% The techmque is most
useful for more complex systems that require many dynami-
cal variables or have no good theoretical description at all.
Then, from a single experimental time series, one can hope
to determine whether the behavior of the attractor can be
described with only a few variables. Thus, in some sense,
systems with low dimensionality are simple systems even
though they exhibit seemingly complex behavior. Determi-
nation of the relevant independent variables is nontrivial, al-
though mathematical methods of finding basis variables and
building model systems based on them have been
developed Our circuit is a simple system to begin with,
requiring two dynamical variables (V, and V,, or the ball
velocity and position, respectively) and a time-dependent
force, equivalent to three variables with no explicit time de-
pendence. Qur correlation dimension of 1.7 for the chaotic
orbit presented in Sec. III would imply that at least two in-
dependent variables are required to describe the attractor in
this parameter regime, fewer than the actual dynamical di-
mension of 3.
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