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I. INTRODUCTION

Undergraduate laboratory exercises to measure y = ¢,/
¢, the ratio of the specific heats of gases, have generally
been unsatisfactory. The method of Clement and De-
sormes," an old standby, is notoriously inaccurate and pre-
sents difficulties when one desires to change the gas under
study. Another method, which has the advantage of using
relatively small volumes of completely contained gas, is
that of Ruchardt."? In this method a precision steel ball is
dropped into a matching precision glass tube connected to
the gas volume. The ball performs damped oscillations in
the tube (if it does not stick) and the student is required to
obtain the frequency from the four or five appreciable oscil-
lations. The volume of the gas must actually be rather large
in order that the frequency be low enough to measure—a
requirement that is not consistent with adiabatic processes.
The method is, in principle, the more interesting one not
only because it links the physics of oscillations to thermo-
dynamics, but also as it was the inspiration for the elegant
experiments of Clark and Katz? in the precision measure-
ment of .

The present experiment is a simple development of the
Ruchardt method using electronic detection of the oscilla-
tions and permitting the investigation of y as a function of
degrees of freedom of the gas moleciile. In addition it uses
very small volumes of gas and easily yields values of  with-
in 3% of the theoretical prediction.

I1. APPARATUS

Modern glass syringes,* when clean and dry, run togeth-
er as frictionlessly as the usual ball and tube. In addition
they are volume calibrated to better than 1%. A 50-ml
syringe was mounted vertically in a metal stand (Fig. 1) and
closed at the needle end with a matching miniature stop-
cock.

An accelerometer” of mass 50 g-and output 50 mV/g (g is
the gravitational acceleration) was mounted on the top of
the syringe plunger. The output of the accelerometer was
displayed on the vertical input of an oscilloscope. The trig-
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Fig. 1. Specific heat apparatus showing A, Accelerometer; B, syringe; and
C, gas bladder.

gering and sweep of the oscilloscope were set so that, when
the plunger was depressed by a few mm and released, one
sweep was triggered displaying five to ten damped oscilla-
tions. The pattern was photographed with an oscilloscope
camera. Such a trace for air is shown in Fig. 2. The output
could easily be digitized and used as input to a microcom-
puter.

I11. DISCUSSION

All the quantities in the equation
fo=(s/2m{(y/m)P/V)]'? (1)

for the frequency of oscillation of the piston can be mea-
sured to within 19%. In Eq. (1), s is the cross-section area of
the piston, m is its mass, ¥ is the volume of gas enclosed in
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Fig. 2. Oscilloscope trace for air. The sweep speed is 50 ms per div.

the syringe, and P is its pressure. The quantity f; is the
undamped frequency which can be obtained from the oscil-
loscope trace using the damped frequency and the logarith-
mic decrement, 4 (see Ref. 6), of the damped oscillation

using

(f/fof = L+ (A /aP)2 (2)
In this formula A is the natural logarithm of the ratio of
successive amplitudes of the oscillatory pattern.

By means of miniature stopcocks and fine rubber tubing,
various gases can be introduced from a bladder into the
syringe: helium (y = 1.67), air (y = 1.40), and natural gas
(¥ = 1.33). By ensuring that the oscillation amplitudes are
small (1 to 2 mm) experimental values of ¥ can always be
obtained within 3% of the expected value.
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SOLUTION TO THE PROBLEM ON PAGE 644

The general equation of motion is obtained from New-
ton’s second law

dp dv dm dv .
F =———=m — —_— —_ y 1
at  "a P a Tt i
where m = mg + rt.
(i) For a constant force, — Fj, Eq. (1) may be integrated
directly
V=(1—aT)/(1+T) (2)
where V = v/v,, T =rt /mg, and a = Fy/rv,. Integrating
dgain
X=(1+4+a)n(l + T)—aT, (3)
where X = rx/mg,. For a =0, one obtains the F=0
results.

(ii) For a sliding friction force, F = — umg, one obtains

V=(1—aT—aT?*2)/(1 + T), (4)
where V2 0 and

X=(1+4+a2)n(l +T)—a(T/2 4+ T%4), (5)

where a = umg/rv,,.
(iif) For a viscous force proportional to the velocity,
F = — bv, one obtains

V=(14T)"0+a (6)
X=[1~(1+T)"*)/a, )
wherea = b /r.
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[iv) For a viscous force proportional to the square of the
velocity, F = — cv?, one obtains
V=1/1+T+aT), (8)
X=In{l+T+aT)/(1 + a), 9)
where a = cv,/r.
(v) For a Hooke’s law force, F = — myw?x,
d’x dx 5
+r—+ muwyx =0. 10
dr? ar Mo (19
Equation (10) may be rewritten as

d*X 1\dX
Ia +(7)7u‘+X=O, (11)

where u = a(1 + T')"/?and a = (2mywy/r). Equation (11) is
Bessel’s equation of order 0. The solution is a linear combi-
nation of Jy(u) and Ny(u) which satisfies the initial condi-
tions

X = 7[Jo(a)No(u) — Nola) Jo(u)], (12)
V = (ma®/2u)[Nolal] () — Jo(@)N,(u)]. (13)
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