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Dynamical symmetry breaking and chaos in Duffing’s equation

Collin L. Olson and M. G. Olsson

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706
(Received 4 October 1990; accepted for publication 7 March 1991)

In certain frequency ranges a nonlinear damped and driven oscillator will respond asymmetri-
cally even though the potential energy is a single symmetric well. This dynamical symmetry
breaking heralds the onset of a period doubling transition to chaos.

A driven damped oscillator with a nonlinear spring can
be thought of as the “hydrogen atom” of chaos. A mass m
subject to a spring force

F(x) = — m(w§x + Bx*), (1)
with linear damping F = — 2myx and a sinusoidal driving
force F = mf cos wt, satisfies Duffing’s equation’

X 4 2y% + wix + Bx* = fcos wt. 2)

Many of the properties of this equation are well known
both in monographs® and in this journal.® The perturbative
solutions, jumps, hysteresis, and harmonic resonances
form an almost classical body of knowledge. The transition
to chaos also has been carefully investigated but primarily
for the double-well case* resulting, for example, when
wsy=—1landf= +1.

Our purpose here is to emphasize and enlarge upon a
deceptively simple example: that of a single symmetric po-
tential well resulting when both w3 and 3 are positive. The
attraction of this case lies in the simplicity of the potential
energy, as shown in Fig. 1. It is straightforward to demon-
strate that if » and B are positive, a rescaling of coordinate
and time reduces Duffing’s equation (2) to a normal form:

X 4 2yxk + x + x* = fcos wt. 3)
In this form the underlying parameters of the system are

the damping constant , the driving amplitude f, and the
driving frequency w. We shall fix the damping at

=1 4
and vary the driving parameters fand .

For f<1 the excitation is nearly linear and the anhar-
monic effects are easily calculated using perturbation theo-
ry. By f =} the hysteresis effect at the primary resonance is
quite evident and harmonic resonances with peaks at
@ =~ (2n + 1) ~ ! are starting to appear. After many cy-
cles of the oscillator, the transients die out and the attractor
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remains. If the response has the same period as the driver,
we have a periodic attractor. In Fig. 2 we show the maxi-
mum displacement (or amplitude) of the attractor for
f=23 for a range of frequencies sweeping both up and
down.’ The hysteresis in the primary resonance is clearly
marked, and a lowest-order perturbation curve is included
to show the jumps from one stable branch to the other
during the frequency sweep. The harmonic resonance
peaks are labeled by their Fourier components.

The Poincaré section is particularly useful in identifying
the onset of chaotic motion. In this picture we concentrate
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Fig. 1. Hard-spring potential energy (with m = @} = § = 1) correspond-
ing to the nonlinear spring force of Eq. (1).
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Fig. 2. Maximum displacement of Duffing’s oscillator with f= 3. The
driving frequency was varied both up and down in small increments. Me-
chanical hysteresis is observed with sudden jumps between the two stable
attractors. The lowest-order perturbative result is shown for comparison.
Harmonic resonances are labeled by their Fourier component, and the
dynamical symmetry-breaking region S,S; is indicated.

on the oscillator response at a particular phase of the driv-
ing force. If the asymptotic orbit is reentrant after one peri-
od of the driver, the mass is always in the same state each
period. The Poincaré section of this periodic attractor will
give a single point in the (x,x) plane. For frequencies below
the primary resonance, the response x(#) is roughly in
phase with the driver, while the response is opposite the
driver at high frequencies. The Poincaré section is thus
quite similar to the maximum amplitude plot away from
resonances. Figure 3 illustrates the frequency dependence

’

Poincare Displacement

Fig. 3. Displacement component of the Poincaré section at zero driver
phase and f = 3 driving amplitude. All subsequent Poincaré plots are also
at zero driving phase.
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of the x component of the Poincaré section when f= 3.
This figure should be compared carefully to the maximum
amplitude plot of Fig. 2.

In Figs. 2 and 3 there is a region® (denoted by S,S})
where an even-harmonic amplitude is present. A Fourier
analysis for f= 3 shows directly that in the frequency re-
gion 0.88 < w < 1.05 the second harmonic (with frequency
2w) begins and ends. The solution otherwise contains only
odd harmonics. Because the potential energy is symmetric
about x = 0, we might have anticipated that the response
would also be symmetric. The actual behavior in this angu-
lar frequency range is an example of dynamical symmetry
breaking. The response is not symmetric even though the
spring potential is.

As shown in Ref. 6, other symmetry-breaking regimes
appear between the odd-harmonic resonance at higher
driving amplitudes /. In both Figs. 2 and 3 there seem to be
two stable amplitudes in the S,S ; region. This is only ap-
parent since there are two otherwise identical ways to
break the symmetry corresponding to a larger right-turn-
ing point or a larger left-turning point. The second solution
is just the back side of the alternative symmetry-breaking
orbit.

We shall emphasize in this article how the S,5; region
evolves as the driving amplitude fis increased. From f= 3
to 15 the symmetry-breaking region will exhibit increasing
hysteresis and more exaggerated frequency dependence of
the orbit. At f = 20 we observe clearly the first true period-
doubling bifurcation, and at f = 25 there is a full cascade of
bifurcations leading to chaotic behavior.

A magnified Poincaré view of the S,S ; frequency region
when f= 5 is given in Fig. 4. Within the S5,S ; region two
curves are shown, indicating that the attractor is asymmet-
ric. For driving frequencies above and below this region,
the solution is symmetric, but between S, and S the dy-
namical symmetry breaking due to the double-frequency
amplitude causes the turning points to be different dis-
tances from the origin. Even though the Poincaré section is

Poincaré Displacement

Fig. 4. f = 5 Poincaré displacement in the 5,5} region. The two attractors
are the two symmetry-breaking cases. They correspond to the same orbit.
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Fig. 5. f= 10 Poincaré displacement. Only one symmetry-breaking at-
tractor is shown. Mechanical hysteresis begins to appear near o = 1.47.

taken at zero phases of the driver, there are two equivalent
orbits corresponding to the two ways that the symmetry
can be broken. Another interesting process which goes on
in this region is a change in the number of orbit loops in the
(x,x) plane. Both above S} and below S,, the orbit is a
simple curve with only one maximum and one minimum
displacement. As one raises the driving frequency above S,
a loop will form, and for a part of the interval between S,
and §'; there will be four turning points (x = 0).

Figures 5 and 6 depict the Poincaré displacements when
S=10 and 15. Very little qualitatively changes at these
larger driving amplitudes other than the development of
some hysteresis at the minimum Poincaré displacement.
Only one of the two possible Poincaré displacements is

Poincar€ Displacement

,_
—
“./w
S
-L

Fig. 6. f= 15 Poincaré displacement.
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Poincaré¢ Displacement

Fig. 7. f= 20 Poincaré displacement. A period-doubling bifurcation ap-
pears between 1.2 <w < 1.4. The hysteresis near @ = 1.8 has become
prominent. Again, only one symmetry-breaking attractor is shown. The
other branch, as in Fig. 4, is the other side of the same orbit.

shown. We sweep up and down in frequency to show the
hysteresis.

When the driving amplitude is increased to f= 20, the
first true period-doubling bifurcation now becomes clearly
evident. The fact that it is preceded by a symmetry-break-
ing bifurcation is general in symmetric systems.’ The Poin-
caré displacement at f= 20 is shown in Fig. 7. The phase-
space (x,x) orbits at @ = 1.4 and 1.45 are illustrated in Fig.
8. Comparison of these two figures shows that in the bifur-
cation region two orbits are required for periodicity. If the
Fourier spectrum were computed in the frequency range of
Fig. 7, a Jot component would appear in the bifurcation
region and nowhere else. This is consistent with the ob-
served period doubling.

A further increase in the driving amplitude to f= 25
produces a complete cascade of bifurcations and a chaotic
region as shown in Fig. 9. Again, we have suppressed the
branch corresponding to the alternate symmetry breaking
except in the region near @ ~ 1.3, where the chaotic regions
of the two branches overlap. Figure 10 shows a more de-
tailed view of the initial part of the bifurcation region, re-
vealing a complete cascade of period doublings. The simi-
larity to the well-known logistic or quadratic iterative map
is striking.

Slightly beyond the accumulation point of the bifurca-
tion sequence lies a region of chaotic motion. At
@ = 1.2902 we show in Fig. 11 the full Poincaré section,
again at zero driving phase. This time, instead of a finite
number of attractor points, a more elaborate attractor is
traced out. Figure 11 exhibits the result of 10 000 oscillator
cycles or 10 000 Poincaré points. An attractor of this sort is
known as a strange attractor. It apparently consists of
curves in the (x,X) plane, but upon closer examination
these curves are found to have internal structure. A closer
view of the portion of the attractor within the rectangle in
Fig. 11 is shown in Fig. 12. In principle, this magnification
can be continued much as with the Henon map,® but nu-
merical limitations soon intercede.
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Fig. 8. Orbits in the (x,x) plane for f= 20: (a) @ = 1.45, a periodic attrac-
tor; (b) @ = 1.40, a period-doubled (two-cycle) attractor.

The similarity between Duffing’s strange attractor and
the Henon strange attractor is also compelling. The self-
similarity of the Henon attractor with increasing magnifi-
cation levels is characteristic of a point set of fractal dimen-
sion. The fractal (or Hausdorf) dimension of the Henon
strange attractor is roughly 3, i.e., between a line and an
area. In the Duffing case at f= 25, with a further increase
in ‘requency, the attractor collapses back in a reverse-bifur-
cat’on sequence and again becomes simple near @ = 1.6.

We have hardly touched upon the complexity of Duff-
ing’s oscillator even with monochromatic excitation. Be-
sides regions of symmetry breaking at large amplitudes,®
these are coexisting attractors, numerous changes in the
number of turning points (or winding number), and many
harmonic resonances. Although the oscillator response can
be quite complex, we believe that this discussion at least
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f=25: Decreasingw

Poincar€ Displacement

Fig. 9. f= 25 Poincaré displacement. The plot is based only on a down-
ward frequency sweep. A complete cascade of period-doubling bifurca-
tions and a reverse sequence occurs. A region of chaos occurs between
these cascades. Near w = 1.33, a three-cycle appears.

gives a feeling for the kind of behavior encountered. We
have indicated the relationship between period-doubling-
type bifurcations and symmetry-breaking bifurcations
which appear similar on the Poincaré plot, but which do
not both involve true period doubling. Most previous work
on Duffing’s equation has focused upon the double-well
case where a rich panoply of chaotic motion is also found.
The double-well case, however, has built in the added com-
plication of two harmonic basins. Other work on Duffing’s
equation considers only the cubic force term.® We have
found it to be quite instructive to explore the hard-spring

4.3vvxﬁf7yvvw\xvv‘vtrw]|VIV|v||v

Poincaré Displacement

wosbc e Lo L

1.26 1.285 1.27 1,275 1.28

Fig. 10. f= 25 Poincaré displacement detail of the bifurcation cascade.
The similarity to the logistic map cascade should be noted.
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Fig. 11. f= 25 Poincaré strange attractor at @ = 1.2902 based on 10 000
cycles.
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Fig. 12. Blowup of the strange attractor of Fig. 11 contained in the rectan-
gle. This plot was based on 30 000 orbits.
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case where perturbative behavior blends into a transition to
chaos.
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