
	 –2–	

Measurement	of	the	Acoustic	Impedance	of	Air-Columns	
	

Herbert	Jaeger	
Department	of	Physics,	Miami	University,	Oxford,	OH	

	
	

Abstract	
	

Acoustic impedance plays a central role when it comes to describing the propagation of 
sound waves in pipes of various shapes, thus it is desirable to perform impedance 
measurements to characterize an acoustic system.  A simple acoustic impedance probe is 
described  that can be used either as lecture demonstration for non-science majors classes 
or as an undergraduate physics student laboratory experiment. 
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Introduction	
Having	had	its	heydays	in	the	19th	century,	physical	acoustics	is	still	a	topic	in	many	
physics	curricula.	Admittedly,	in	introductory	physics	courses	only	the	very	basic	
topics,	such	as	simple	resonance	and	standing	waves	on	strings	and	in	air	columns,	
are	discussed	briefly.		However,	many	institutions	offer	courses	along	the	lines	of	
“Physics	of	Music”	for	non-science	majors	in	pursuit	of	fulfilling	their	science	
requirement,	that	go	beyond	the	basics	and	discuss	more	advanced	topics,	including	
the	intricate	workings	of	woodwinds	and	brass	instruments.		Out	of	necessity	the	
approach	must	be	a	qualitative	one,	since	the	mathematical	background	of	this	
audience	is	not	sufficient	to	allow	for	the	solution	of	complex	differential	equations	
and	boundary	value	problems.	
	
The	acoustic	impedance	plays	a	central	role	when	it	comes	to	describing	the	
propagation	of	sound	waves	in	pipes	of	various	shapes.		The	concept	of	impedance	is	
not	terribly	hard,	but	unfortunately	it	is	a	complex	quantity	(both	literally	and	in	the	
more	general	sense)	and	quite	intractable	for	the	student	in	a	“poets	course”,	or	
even	some	first	year	physics	students.	
	
However,	just	like	its	electrical	counterpart,	the	acoustic	impedance	may	be	
measured	straightforwardly	with	simple	equipment	usually	found	in	a	first-year	
physics	laboratory	or	a	well-equipped	physics	stock	room.	
	
While	it	is	beyond	the	typical	poets-course	student	to	calculate	the	impedance	of	a	
pipe	with	a	flared	bell,	it	turns	out	to	be	quite	simple	to	measure	it.		Comparison	
with	the	impedance	of	a	standard	cylindrical	pipe	of	the	same	length	allows	to	see	
the	effect	that	the	flared	bell	has	on	the	resonances	of	the	air	column.	
	
In	this	way	even	students	who	do	not	have	the	mathematical	sophistication	of	a	
senior	physics	or	engineering	major	can	learn	to	appreciate	the	subtleties	that	go	
into	building	a	real	musical	instrument	from	a	plain	brass	pipe,	or	why	one	type	of		
trumpet	mouthpiece	sounds	“brighter”	than	another	one.	
	
Here	we	discus	a	simple	device	to	measure	the	input	impedance	of	a	pipe	or	a	
musical	instrument,	a	so-called	“impedance	probe”.		The	impedance	probe	consists	
of	components	that	can	be	easily	and	inexpensively	obtained	from	any	mail	order	
electronics	parts	company	such	as	Mouser	or	Jameco,	and	assembled	with	tools	and	
parts	available	at	your	local	hardware	store.			
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Acoustic	Impedance	
Acoustic	impedance	is	in	concept	similar	to	its	electrical	counterpart	and	quantifies	
the	tendency	of	an	acoustic	system	to	resist	air	flow.		However,	for	acoustic	systems	
several	flavors	of	impedances	exist.	The	acoustic	impedance	is	defined	as	the	
complex	ratio	of	the	pressure	difference	across	a	section	of	pipe	over	the	volume	
flow	rate	through	it,	or		

	
z
a
= p
U
	 (1)	

	
The	specific	acoustic	impedance	is	defined	as	the	complex	ratio	of	the	pressure	
difference	across	a	section	of	pipe	over	the	particle	flow	rate	through	it,	or		

	
	
Z
s
= p
u
	

	
The	volume	flow	rate	is	related	to	the	particle	velocity	u	as	 ,	with	S	the	cross	
sectional	area	of	the	air	flow,	so	that		

	 	Zs = zaS 	
	
	
	

Newton’s	2nd	Law	for	a	Packet	of	Air	
Consider	a	small	packet	of	air	of	cross	section	S	and	length		Δx .		The	pressure	

difference	across	its	length		Δx 	is	
	

∂p
∂x

Δx ,	resulting	in	a	net	force	
	
F
net

= − ∂p
∂x

ΔxS 	on	

the	packet	of	air.	The	resulting	acceleration	of	the	mass	m	of	the	packet	of	air	is	

	
ma= ρSΔx ∂u

∂t
,	and	the	relation	between	pressure	and	particle	velocity	is	

	
	
− ∂p
∂x

= ρ ∂u
∂t
.	 (2)	

	
	
	

Plane	Waves	in	Air	
The	acoustic	pressure	of	a	plane	wave	has	the	form				p(x ,t)= Ae

− i(kx−ωt ) ,	with	the	

wave	number	
		
k = 2π

λ
	and	the	angular	frequency			ω =2π f .		Using	Newton’s	2nd	law	

(2)	and	integrating	to	obtain	an	expression	for	u(x,t)	

	
		
u(x ,t)= 1

cρ
Ae− i(kx−ωt )

		
	
	

	U =uS
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allows	to	calculate	what	is	known	as	the	characteristic	impedance	of	air	

		
z
o
= p(x ,t)
u(x ,t) = cρ .	

	

For	air	at	20˚C		
		
z
o
= 413.2Ns

m3 .	

	
	
	

Plane	Waves	in	a	Pipe	of	Constant	Cross	Section	S	
A	plane	wave	propagating	in	an	infinitely	long	pipe	has	the	same	form	

,	as	there	is	no	reflected	wave	to	consider.		The	characteristic	

impedance	of	the	pipe	is	then	

		
Z
o
= p(x ,t)
U(x ,t) =

cρ
S
	

	
Note	that	the	characteristic	impedance	of	the	pipe	is	inversely	proportional	to	the	
pipe	cross	section,	very	much	like	the	electric	specific	resistance	of	a	wire.	
	
Plane	waves	in	a	pipe	of	finite	length	have	a	component	of	the	wave	reflected	from	
the	far	end	and	thus	are	of	the	form	

	
			p(x ,t)= Ae− ikx +Beikx( )eiωt .	

	
As	above,	we	use	Newton’s	2nd	law	and	integrate	to	obtain	

	
		
U(x ,t)= S

cρ
Ae− ikx −Beikx( )eiωt ,

		
and	the	acoustic	impedance	at	x=L,	the	far	end	of	the	pipe,	is		

		
z
a
= p(L,t)
U(L,t) = Zo

Ae− ikL +BeikL

Ae− ikL −BeikL
.	

	

The	impedance	at	x=L	must	match	the	impedance	of	the	“load”,		ZL ,	

	
Z
o

Ae− ikL +BeikL

Ae− ikL −BeikL
= Z

L
	

	
and	this	results	in	a	condition	for	the	ratio	of	B/A	

		
B
A
= e− i2kLZ

o

Z
L
− Z

o

Z
L
+ Z

o

.	

	
	

		p(x ,t)= Ae
− i(kx−ωt )
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The	impedance	at	x=0,	the	input	impedance		Zin 	is	

		
Z
in
= p(0,t)
U(0,t) = Zo

A+B
A−B

	

	
and	using	the	expression	for	B/A	we	have	the	input	impedance	of	a	cylindrical	pipe	
of	length	L	as	

		
Z
in
= Z

o

Z
L
+ iZ

o
tan(kL)

Z
o
+ iZ

L
tan(kL) 	 (3)	

	
	
	

Resonance	and	Input	Impedance	
To	understand	the	meaning	of	the	input	impedance,	let’s	consider	a	pipe	open	at	
both	ends.		To	good	approximation	the	far	open	end	corresponds	to	ZL	=	0,	and	the	
open	end	at	x	=	0	means	we	have	Zin	=	0.		The	expression	for	Zin	of	Eq.	3	then	

becomes	the	following	condition			0= iZo tan(kL) ,	which	is	satisfied	by	the	zeros	of	
tan(kL),	i.e.		kL= nπ 	with		n=1,	2,	3,…	
	

Expressing	k	in	terms	of	the	frequency	
		
k = ω

c
= 2π f

c
	we	have	

		
2π f
c
L= nπ 	or	

		
f = n c2L .		

These	are	the	resonances	of	an	open-open	cylindrical	pipe,	i.e.	the	frequencies	for	
which	we	have	the	formation	of	a	standing	wave	in	the	pipe.	
	
	A	pipe	open	at	the	far	end	(ZL	=	0)	but	closed	at	the	other	end	(Zin	à	∞)	results	in	

the	condition			iZo tan(kL)→∞ 	or			cot(kL)=0 ,	which	is	satisfied	by			
kL= nπ2 	with													

n	=	odd	integers.		In	terms	of	the	frequency	we	get	
		
f = n c4L 	with	n	=	1,	3,	5,…	

	
Figure	1	shows	a	plot	of	the	magnitude	of	the	input	impedance	for	a	69-cm	long	pipe	
with	both	ends	open.		This	is	an	idealized	case	as	we	have	ignored	losses	on	the	pipe	
walls.		If	losses	are	included,	the	impedance	is	damped,	as	shown	in	Fig.	2.	
	
The	resonance	frequencies	for	the	open-open	pipe	are	the	minima	of	the	input	
impedance,	while	the	resonance	frequencies	for	the	pipe	closed	at	one	end	are	the	
maxima	of	the	impedance	curves.	
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Fig.	1:	 Input	impedance	of	a	loss-less	pipe	of	L	=	69	cm	open	at	both	ends.	
	
	

	
	
Fig.	2:	 Input	impedance	of	a	pipe	of	L	=	69	cm	open	at	both	ends.		Wall-losses	are	

included	and	result	in	a	“damping”	of	the	impedance	curve.		Details	about	
including	losses	can	be	found	in	N.	H.	Fletcher	and	T.	D.	Rossing,	The	Physics	
of	Musical	Instruments,	2nd	Edition,	Springer	(1998).	
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Measurement	of	Acoustic	Impedance	
A	review	of	methods	to	measure	acoustic	impedance	is	given	by	J.-P.	Dalmont,	
Journal	of	Sound	and	Vibration	243(3),	2001,	427–439;	Journal	of	Sound	and	
Vibration	243(3),	2001,	441–459;	and	by	A.H.	Benade	and	M.I.	Ibisi,	Journal	of	the		
Acoustic	Society	of	America	81	(4),	1987,	1152–1167.	

There	are	a	number	of	approaches	to	determine	the	acoustic	impedance	
experimentally.		The	most	straight-forward	scheme	requires	2	Sensors.	A	
microphone	to	determine	pressure,	and	an	anemometer	to	measure	volume	flow.		
Instead	of	the	anemometer	a	couple	of	microphones	could	be	used	that	returns	a	
signal	proportional	to	the	volume	flow	at	a	point	half	way	between	the	two	
microphones.		Sometimes	the	absolute	value	of	the	impedance	is	not	needed.		For	
example,	if	the	resonance	frequencies	need	to	be	determined,	we	need	to	find	the	
extreme	values	of	the	impedance	as	function	of	frequency.	Thus	a	signal	is	required	
that	is	proportional	to	the	impedance.		A	number	of	methods	employ	a	feedback	
loop	to	maintain	a	constant	volume	flow;	then	the	pressure	signal	is	proportional	to	
the	impedance.			

Benade	and	Ibisi	(citation	see	above)	in	great	detail	discuss	an	impedance	probe	
that	is	easily	realized	with	a	piezo	disc	and	a	small	electret	microphone.	The	piezo	
disc	is	controlled	by	a	function	generator	in	such	a	way	that	a	constant	volume	flow	
results	without	the	need	for	a	feedback	loop.		It	is	such	an	impedance	probe	that	we	
employ	for	this	experiment.	
	
The	reason	this	works	is	because	the	impedance	of	the	piezo	disc	generally	is	much	
greater	than	the	impedance	of	the	pipe	to	be	studied.		This	is	equivalent	to	driving	a	
current	trough	a	low-resistance	load	with	a	power	supply	with	a	much	higher	
internal	resistance	than	that	of	the	load.		Thus	even	with	the	load	resistance	
changing,	the	current	through	the	load	remains	constant	as	long	RLoad	<<	RPower	Supply	
at	all	times.		The	piezo	disc	itself	has	a	resonance,	but	typically	that	is	above	the	
frequencies	of	interest	of	the	acoustic	system.		For	example,	the	piezo	we	are	using	
for	this	experiment	has	a	resonance	frequency	near	6	kHz;	the	frequencies	of	
interest	for	pipes	or	musical	instruments	under	study	typically	are	below	3	kHz.	
	
Figure	3	shows	the	piezo	and	the	microphone	and	views	of	the	assembled	probe.		
The	piezo	is	a	Kobitone	piezo	transducer	(Mouser	Electronics	Part	No.	256-PB012).			
The	pressure	detector	is	a	Kobitone	electret	condensor	microphone	(Mouser	
Electronics	Part	No.	EM2200)	with	a	2.2	kΩ output impedance	and	an	operating	
voltage	of	2	V.		The	microphone	is	only	6	mm	in	diameter	and	is	mounted	in	hole	
drilled	in	the	side	of	the	coupler	10	mm	away	from	the	piezo	disk.		The	probe	itself	is	
connected	to	the	system	under	study,	e.g.	a	cylindrical	PVC	pipe,	the	barrel	of	a	
clarinet,	or	the	mouthpiece	of	a	trombone.			
	
Figure	4	is	the	circuit	diagram	of	the	impedance	probe.		Op-amp	741,	R1,	R2,	and	C2	
form	an	integrator	that	integrates	the	function	generator	signal	and	feeds	it	to	the	
piezo.		Since	the	function	generator	operates	at	constant	amplitude,	it	would	
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generate	a	volume	velocity	that	increases	with	frequency	when	fed	to	the	piezo.		
Feeding	the	integrated	function	generator	signal	to	the	piezo	results	in	a	signal	that	
produces	a	constant	volume	velocity	in	the	tube.		The	feedback	RC	component	is	
chosen	for	the	integrator	to	have	a	low-f	cutoff	below	50	Hz.			
	
The	microphone	signal	is	amplified	by	an	AC-coupled	2-stage	op-amp	amplifier	
(type	747)	bringing	the	signal	into	the	0–5	V	working	range	of	the	digitizer.		We	are	
using	a	National	Instruments	NI–USB	6008	with	a	maximum	sampling	frequency	of	
10	kHz.	This	allows	digitizing	waveforms	of	up	to	5	kHz,	which	for	our	purposes	is	
sufficient.		If	higher	frequencies	need	to	be	sampled	digitizer	with	sampling	rates	
greater	than	10	kHz	must	be	used.	
	
The	open	end	of	the	impedance	probe	is	easily	attached	to	a	schedule	40	¾”	PVC	
pipe,	and	it	can	also	be	attached	to	½”	PVC	pipes	with	a	reducing	adapter.		
Moreover,	the	impedance	probe	is	easily	adapted	to	fit	the	barrel	joint	of	a	B-flat	
clarinet	or	a	trumpet	or	trombone	mouthpiece	and	thus	is	suited	for	measurements	
on	real	instruments.	
	
	
	

	
	
	
	
	
	
	
	
	
	
	 	

	
	
	
	
	
Fig.	3:	 The	impedance	probe	for	this	experiment.		The	left	photograph	shows	the	

piezo	disc	and	the	electret	microphone	used	for	the	probe.		The	grid	is	a	
quarter	inch	square.		The	top-right	two	photographs	show	how	the	disc	and	
the	microphone	are	mounted	in	a	short	PVC	tube.		Microphone	and	piezo	
should	be	at	the	same	plane	but	for	practical	reasons	are	about	10	mm	apart.		
The	microphone	is	installed	at	the	end	of	a	1/8”	audio	connector.		Connection	
to	the	piezo	disc	are	made	with	an	1/8”	audio	plug.		The	lower-right	
photograph	shows	how	the	probe	is	mounted	to	a	pipe	under	test.		The	probe	
represents	a	closed	end,	while	the	other	end	of	the	pipe	is	open.	
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Fig.	4:	 The	circuit	for	this	experiment.		Op-amp	741	is	the	integrator	that	controls	

the	piezo	to	generate	a	constant	volume	flow.		The	microphone	signal	is	
amplified	by	a	2-stage	amplifier	(747)	with	variable	gain	(R7).		Resistors	R3	
and	R5	form	a	voltage	divider	to	supply	the	needed	voltage	for	the	FET	
internal	to	the	microphone.	

	
	
	
Figure	5	shows	the	entire	system	with	the	impedance	probe	connected	to	the	
mouthpiece	of	a	trombone.		The	integrator	and	microphone	amplifier	are	in	the	
small	black	box	below	the	probe.		The	oscilloscope	is	used	as	a	visual	check,	and	
below	it	sits	the	function	generator.		It	is	set	up	to	produce	a	sine	output	of	approx.	
1 Vrms.  A	computer	controls	the	frequency	of	the	function	generator,	and	a	typical	
sweep	is	from	100	Hz	to	3000	Hz	in	steps	of	1	to	5	Hz.		An	A/D	converter	digitizes	
the	output	signal	of	the	microphone	amplifier	and	saves	the	microphone	signal	vs.	
frequency	for	later	analysis.		The	A/D	converter	samples	the	microphone	signal	at	
10	ksamples/s	for	a	duration	of	10	periods	and	determines	the	rms-amplitude	of	the	
signal.	
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Fig.	5:	 The	impedance	probe	and	the	associated	electronics.		The	inset	shows	the	

probe	mounted	to	the	mouthpiece	of	a	trombone.	
	
	
	
	 	


