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CSUC
Department of Physics
301A Mechanics
PORTFOLIO Problem 1.) due: Friday, September 28 Enrico Fermi’s birthday is 9/29/1901 (Rome)
—————————————————————————————————————————————————

A. Realistic Projectiles: Your first PORTFOLIO problem.

P1.) A projectile is fired straight upwards from the earth’s surface experiencing both gravity and an air drag
force whose magnitude is of the form: F drag = β

(
eα |v| − 1

)
where α and β are parameters to be determined

by the measured initial conditions and asymptotic terminal velocity. This form is actually quite realistic and was
deduced as a curve fit to Remington Arms ammunition data. The projectile is fired with an initial velocity of
v 0 = 3 × 10 3 ft/sec. and initially decelerates at 100 g upon emerging from the muzzle. We estimate the terminal
velocity as v terminal = 50m/sec.

a) Find v(t) analytically for the trips up and down.

b) Find v terminal on the way down from simple examination of the equation of motion and show that it agrees with
the conclusions of part a).

c) Compute the trajectory numerically and display your results in both tabular and graphic forms. Find how long
the projectile takes to reach the top of its trajectory and also the total duration of its flight (in natural units and in
seconds!). Argue that your answer is probably correct to one percent accuracy - and how you checked that.

d) Finally, compare the analytic result for v(t) from part a) with your numeric results for v(t) from part c) by
graphing them side by side. Comment !

1. Philosophical Notes on Problem P1

This problem has many objectives. First, like most (real) problems it is intrinsically numerical - and we need to
accustom ourselves to doing numerics and graphing without flinching ... or even noticing, really. At the same time,
I hope you recognize that we should understand a problem rather well before we ever attempt a numerical solution.
Second, this problem ⇒ requires ⇐ choosing intelligent natural units. You will find that extracting the values of
the modeling constants {α, β } requires a little numerical work of its own. This is the way life is. Once you have set
up your equation of motion in active form you are ready for a spread sheet or Python or “some other” numerical
device (I used a programable hand calculator the first time I did this) to increment your way along in time.

2. The BIG Lessons

1) In order to perform numerical computation you MUST turn your equation from “Passive” to “Active”. This
requires “actively” choosing “some sort” of units. Natural units will deliver an equation that is far simpler to
understand physically and ... Well Conditioned numerically ... i.e. the numbers won’t be exponentially large
or small. Choosing intelligent natural units is essential ...not just convenient ! So what are they? This brings
in “Physics”. The natural sizes offered by this problem are precisely v terminal and g ...so use them! By working
“backwards” you will find that you have defined natural length and time units.

2) Newton’s 2nd Law is an Algorithm for incremental forward stepping in time. Dwell on this ...until you believe
it! Differential Equations were “invented” with the advent of Newton’s Laws and they lead you to the proper
understanding! You are to “increment” your way forward using a spreadsheet (...or Python...or what have you!).
Whatever you do ... don’t treat numeric tools as a magic wand that gives you the answer but relieves you of the
burden of understanding things ...no “Mindless Mathematica Mental-mode” here!

3) Please notice that I have asked you to connect a few “analytical” deductions with your numeric deductions. In
the end, I would hope you would see both processes as equivalent ways of saying the same thing. In your mind’s eye,
they should simply be alternative expressions and enhance each other, or indeed require each other. I deeply respect
the great “Central European” tradition that views analysis without numerics as sterile and numerics without analysis
as blind.
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B. “Hands On” Notes for Solving P1

1.) First off, . . . let’s notice dimensions. It must be the case that β has the dimensions of “Force” since it is
one of the force entries in Newton’s second law - that’s clear. But also, α, which only appears inside the argument
of a modeling function, must have the net dimension of an “inverse velocity” since the argument of any physical
function must be dimensionless ! Please contemplate and convince yourself of this fact.

2.) All good Physics is about “Competition Between Effects”. The natural sizes offered by this problem
are precisely g and v terminal which, then, measure for us the two competing effects of this problem: “Gravity and
Air-Drag”. The wisdom of Physics is to use the sizes of the problem as your “Natural Comparison Amounts”. The
mass of the projectile might also interest us ... but as we see in so many gravitational problems, it will be observed
to “simply drop out” (why does this always happen ?). This being so, we observe that “Nature” has given us a
characteristic velocity and a characteristic acceleration. It may not be what we wanted ... but it’s what “Nature”
gave us ... so we run with it. We introduce new Natural Units {L, T} such that:

g = 1

(
L

T 2

)
and v terminal = 1

(
L

T

)
Now we “back-solve” and conclude that:

L = 1

(
v 2
terminal

g

)
and T = 1

(
v terminal

g

)
At this point we realize that the argument (α v) may be written as (α v terminal) ·

(
v

v terminal

)
. This is proper since

now (α v terminal) ≡ a now becomes our dimensionless model constant and
(

v
v terminal

)
≡ v′ becomes our naturally

scaled and dimensionless active variable. So also
(
t
T

)
≡ t′ . In the same way, if we divide our equation of motion

by mg, we arrive at a dimensionless version of our second model constant viz. β /mg ≡ b. As our equation for the
upward motion, you should be able to arrive at:

d v′

d t′
= −1 − b

(
ea v

′
− 1

)

3.) Solving this analytically is really not so hard. First, tidy up (and leave off the primes!):

d v

d t
= (b− 1) − b ea v

Now, multiply the whole equation by −a e−a v , resulting in:

−a e−a v d v
d t

= −a (b− 1) e−a v + a b

This makes the left hand side a total derivative! We achieve:

d e−a v

d t
= −a (b− 1)

(
e−a v − b

b− 1

)
. . . and finally . . .

d
(
e−a v − b

b−1

)
d t

= −a (b− 1)

(
e−a v − b

b− 1

)
And now, if we define

(
e−a v − b

b−1

)
≡ w . . . we have:

dw

d t
= −a (b− 1) w

And this has the simple solution:

w(t) = w 0 e
−a (b−1) (t− t0)

Now just re-insert the symbol definitions and we are done! The journey downward is just as easy.
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4.) Our last task before numerical integration is finding {a, b}. We have two bits of information to work

with. First, at the initial moment d v′

d t′ = −100 while the velocity is a known value v′init. On the way down, the
system rapidly approaches zero acceleration and v → vterminal and this means v′ → −1 . Using the equation of
motion twice with these specifications gives us two algebraic equations for the two unknowns {a, b}. Of course, these
equations are spectacularly non-linear! But who cares anymore ... we have graphing and numerical tools galore!
With sensitive graphing etc., we can easily see what values make these two equations true at the same time. That’s
the solution! This is the attitude you are to adopt. Go at it!

5.) Now possessing {a, b} as known definite values, we can apply any technique we wish to increment our
way along and find the trajectory at any given time. The simplest technique is Euler’s method:

∆x ≡ d x

d t
∆t and ∆ v ≡ d v

d t
∆t

where d x
d t = v, and d v

d t is given by Newton’s second law.

The universal algorithm is then given by:

xnew = xold + ∆x and vnew = vold + ∆ v

The problem then increments itself along. Once you define ∆t . . . you simply move from increment to increment
adding up the changes as you go along. Think of this, as we discussed in class, as filling in a spreadsheet row by
row. It is not at all important that ∆t be the same for each step ... only that it be “small enough” that the curve
be “sensibly flat” over the interval. Thus, for example, once the projectile has reached terminal velocity ... its value
is unchanging and completely flat no matter how large the interval is. Sensitive numerical evaluation always exploits
such features.


