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CSUC
Department of Physics
301A Mechanics
PORTFOLIO Problem 2.) due: Monday, December 3, 2018
—————————————————————————————————————————————————

I. FOURIER SERIES AND THE RESPONSE OF A S.H.O. TO A PERIODIC DRIVE.

A. Introduction

Your second PORTFOLIO exercise is to compute the steady-state response of a damped Simple Harmonic Oscillator
to a periodic driving force. This is essentially problem 5.53 on page 214 in your Text, but here we will be using an
odd “Saw-Tooth” driving force (shown below) instead of the even function shown there. I also want you to use a more
realistic (and universally expressed !) set of intervals and damping constants so that you can see how you always scale
them out in any real problem. A nice picture of the driving force we are talking about is shown next. Observe how
we have centered our coordinate system both horizontally and vertically.

FIG. 1: The driving force for our Simple Harmonic Oscillator

The driving force repeats over a total time interval we’ll call Tdrive (but called simply T on the graph). The
Simple Harmonic Oscillator, itself, has a natural undamped period we will call To. It will often be more convenient
to refer to these sizes through their associated frequencies. We define: ωo ≡ 2π/To, and ωd ≡ 2π/Tdrive. Finally,
we will find it very convenient to define their ratio too: ωd ≡ ωd/ωo. The general outline of this Portfolio Problem
will be to: 1st ) find the Fourier coefficients of this driving force and plot the sum as a Fourier Series up to
the first ten non-vanishing terms, then 2nd ) you will compute the Steady State Response of our S.H.O. to this
force. You will actually evaluate the response for four different settings, namely for two different values of ωd
(one less than and one larger than unity) ... and each of these at two different values of the quality factor Q
(namely low and high). You will then make tables of the response coefficients and phase shifts and comment on
the convergence pattern as was done in example 5.5 in your text. All of this will be laid out in detail in Part C. below.

It is not possible to over-emphasize the importance of the Fourier approach! It appears everywhere in physics
and exposes the most intimate inner workings of Nature. I urge you set up your algebra very very carefully before
you do the numerics. Then, the actual evaluation will be rather simple and repetitive. Note especially the rapid
convergence of the sum and the selectivity of the response. You may use a simple EXCEL spread sheet or something
more sophisticated like Python. The use of MATHEMATICA works well too.
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B. Let’s Get Started ...

1. The Reading

Please read (or re-read as may be ...) the following sections in your Text.

1.) “Complex Solutions ...” found on pages 181-192.
2.) “Fourier Series” section 5.7 found on pages 192-197.
3.) “Driven Oscillator” section 5.8 found on pages 197-203.
4.) “Fourier Series Notes” These are found on our class web-site and are some great review notes written for
a scientific audience by John R. Peacock of the University of Edinburgh. The notes are to be regarded as purely
supplementary for this course and you will probably profit from looking at, say, pages 1-18, though they take you
much further if you choose to go there some day.

2. The Stuff to Remember Forever

a.) Linear Ordinary Differential Equations with constant coefficients are special! Their solutions are all
exponentials - though possibly with complex arguments which, then, yield our oscillatory behavior.

b.) Any Sinusoidal driving force leads to a Steady State Response which is also sinusoidal at the exact same driving
frequency (though shifted by a constant phase) ! This fact is due solely to the linearity of the defining equation. For
the same reason, if the drive is a sum of individual sinusoidal forces, then the steady state response will be the sum
of the individual solutions. It’s that simple. Linearity is an overwhelmingly important feature.

c.) In the technical person’s way of thinking all S.H.O. systems are “self-similar” and may be mapped on to each
other by simple scaling. So! ... the first things you ever ask about any S.H.O. is “what are ωo and Q ” ? The System
we now consider has one more feature, viz. the drive. Accordingly there are three time scales: { To, Tdecay, Tdrive }.
This implies that there are two dimensionless ratios. We take as our standardized expressions of these: ωd ≡ ωd/ωo
and Q ≡ ωo Tdecay . Basically everything that can be said about the system can be expressed in terms of these.

d.) A driven S.H.O. responds most vigorously if the driving frequency is close to the natural frequency. This is
called “Resonance”. Just how close you have to get is best described by the transfer of energy discussion. This
leads directly to one of the most fundamental (... and yes, again ... sort of “Bell-Shaped”) functions in all of
physics namely the “Lorentzian Power Curve”. If you are driving the system at lesser or greater frequencies than
the “Natural” frequency ... then your rate of energy transfer drops. If we measure the frequency span from half max
power delivery below to half max above we come to an exact relationship worth memorizing: ∆ω 1/2 = 1 /Q .

3. Our S.H.O. System

Our system obeys the following fundamental relationship:

mẍ + b ẋ + k x = F (t) (1)

which we gently rearrange by dividing out the mass and defining: 2β ≡ b/m and ω2
o ≡ k/m and f(t) ≡ F (t)/m.

This results in the form of our equation given in our Text:

ẍ + 2β ẋ + ω2
o x = f(t) (2)

We put this, however, in a more universal (and far more meaningful) form by defining: b/m = 2β ≡ 1/ Tdecay
and now also, finally, ωo Tdecay ≡ Q to achieve:

ẍ +
ωo
Q
ẋ + ω2

o x = f(t) our final “working” form for Newton’s Second Law. (3)
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4. Our Fourier Approach

The FORCING FUNCTION for this problem is given by the linear function:

f(t) drive = fmax

(
t

Td/2

)
(4)

It is very convenient at this point to introduce an angle variable θ which will represent the time in a one-to-one
way by a simple proportionality. We define θ then via:

θ

2π
≡ t

Tdrive
or θ = 2π

t

Tdrive
= ωd t (5)

In this way, as t sweeps out an interval of size Td our angle θ sweeps out a “normalized” interval of size 2π. Notice
that our forcing function can now be easily expressed as:

f(t) drive = fmax

(
θ

π

)
(6)

Now we write the fundamental Fourier statement:

f(t) drive =

∞∑
n=0

(An cos(n θ) + Bn sin(n θ) ) (7)

You will recall that any function may be written as the sum of its even and odd parts. The way to do this is simply
to write:

f(t) =
1

2
{ f(t) + f(−t) } +

1

2
{ f(t) − f(−t) } ≡ f(t)even + f(t)odd

The cosines (being themselves even) in the Fourier decomposition represent the even portion of our function and
the sines (being odd) the remaining odd portion. So, in the case at hand, we only have the sines present.

f(t) drive =

∞∑
n=1

Bn sin(n θ) (8)

At this point we use the key orthogonality property of our trig functions, namely:

∫ π

−π
sin(mθ) sin(n θ) dθ = π δm,n (9)

Using this, we finally conclude that the Fourier coefficients may be extracted by a universal procedure, viz.:∫ π

−π
sin(mθ) f(t) drive dθ = π Bm (10)

Now for the STEADY STATE RESPONSE ! Our system responds with its own Fourier series:

x(t) response =

∞∑
n=1

xn sin(n θ − δn) . . . where : (11)

xn =
Bn
ω2
o

1√
[1 − (nωd)2]

2
+ [nωd /Q]

2
. . . and : (12)

tan(δn) =
(nωd) /Q

1 − (nωd)2
(13)
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C. Your Problems

1. The Forcing Function

a.) Please compute analytically the Bn that come from our specified f(t)drive. Make a table of Bn

fmax
for the first

ten terms and also a graph of these numbers versus n.

b.) We now use these terms in our Fourier representation to approximate our true f(t)drive:

f(t)drive ≈ f(t) approx ≡
10∑
n=1

Bn sin(n θ) (14)

Please graph
f(t)approx

fmax
versus θ over the interval [−π , +π ] and superimpose the graph of f(t)drive

fmax
.

2. The Response Function

You will now consider four cases which you are to compute and observe the manner of response:

Case 1.) ωd = 1/5 and Q = 3

Case 2.) ωd = 1/5 and Q = 15

Case 3.) ωd = 5 and Q = 3

Case 4.) ωd = 5 and Q = 15

c.) For each case numerically compute the response coefficients {xn} and form both a table and a graph of :

xn
fmax/ω2

o

versus n

d.) For each case numerically compute the phase shifts {δn} and form both a table and a graph of them versus n.

e.) For each case numerically compute the approximate response :

x(t)response ≈ x(t) approx−response ≡
10∑
n=1

xn sin(n θ − δn) (15)

and make a graph of:

x(t) approx−response
fmax/ω2

o

versus θ over the interval [−π , π] .


