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CSUC
Department of Physics
301A Mechanics
Problem Set 1, due Friday, September 7, 2018
———————————————————————————————————–

I. READING

Please study the class notes on Dimensional Analysis by Friday, August 24, and complete the following written
problems by Friday, September 7. Read Chapter 1 in your class text through section 1.6 and the following class notes:
Basic Vector Notes and Pre-Introduction to Vectors by September 3. Problems from this chapter will also be
found in the next written set. Section 1.7 will be covered in great (!) detail later.

II. PROBLEMS

A. From the Text: Difficulty Index 1.0

Problem 1. 1.18 pp. 36
Problem 2. 1.19 pp. 37
Problem 3. 1.20 pp. 37
Problem 4. 1.23 pp. 37

B. From the Class Lectures and Notes: Difficulty Index 1.0

Problem 5. A standard exercise in unit conversion.
A system of units often used by mechanical engineers chooses, in addition to the foot and the second, its third

fundamental unit as a unit of force (not the usual mass!) called the pound-weight or “pound” for short. The unit
of mass then becomes a derived unit if we are to use a set of units coherent with Newton’s second law in its usual
French form. This unit of mass is called the slug. Express the slug in terms of the fundamental units (foot, lb, sec).
Now, compare each of these units to the standard SI unit of like kind. Find the (dimensionless) numerical value of
the fundamental gravitational constant GEnglish in this system.

Problem 6. A standard exercise in unit definition.
The coefficient of viscosity η is defined by the equation F

A = η dv
ds where F is the frictional force acting across an

area A in a moving fluid, and dv is the difference in velocity parallel to A between two layers of fluid a distance ds
apart (measured perpendicular to A - please see the figure below). Find the dimension of η and the units in which
it would then be expressed in the SI and {pound, foot ,sec} unit systems. Find the conversion factor between these
units.

FIG. 1: The geometry of the experiment defining the coefficient of viscosity

Problem 7. Dimensional considerations almost totally solve many problems...like this one !
A fluid flows through a cylindrical pipe of length l and radius a and we wish to model the flow and find the

necessary relationships among the descriptive variables. A pressure difference ∆P (force per unit area) causes a flux
Φ (volume per second) to flow through the pipe. Let’s start by making the natural “model assumption” that ∆P
is strictly proportional to l but otherwise depends only on: (a) Φ, (b) on the radius a of the pipe, and (c) on the
viscosity η as defined above. We write, then, as our starting model: ∆P = l f(Φ, a, η). Show from dimensional
considerations alone that it then follows that the unknown function f can be known up to an undetermined dimen-
sionless constant. Show, in fact (!), that ∆P must be proportional both to η and to Φ and inversely proportional to a4.
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Problem 8. This is a quintessential “Natural Units” problem. Find Them! Difficulty Index 2.0
A mass m is located by its spatial coordinate x at time t. Imagine that its motion is governed by the following

energy relationship:
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When we measure the world using M.K.S. units, the constants m, l, k, and E take the numerical values
m = 5.976 × 10 24, k = 7.928 × 10 44, l = 2.661 × 10 40, E = −2.6515 × 10 33 .

These values are clearly ridiculous and we seek “more natural” units.

a.) Find a new set of length, time , and mass (. . . and so also energy) units (expressed both symbolically in terms
of {m, l, k} and as M.K.S. values) such that using them our equation assumes the following much simpler form:
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where x ′ and t ′ are the measured numbers in this new “natural” unit system. Can you discern what these new
“unit” quantities really are? (Hint: This is a real problem from a setting YOU know and love!)

b.) Now find the “simple” numerical value of E ′ in this new unit system. Comment.

Problem 9. Building a ‘Hot-Air’ Balloon: an estimation exercise using natural sizes and scaling.
Difficulty Index 2.0
Hot air balloons work because the hot air inside the balloon is at the same pressure as the cold air outside but

weighs less because it’s less dense. If the balloon started with cold air inside, which we then heated, some of the
air would have escaped from the balloon’s fixed volume as the heated air inside expanded. Archimedes’ law tells
us that the buoyant lift we achieve is just the weight of the air that left. Since cold air ‘floats’ in cold air, each
kilogram that leaves the balloon enables us now to lift a kilogram of our own payload! Of course, part of our
payload is the physical mass of the balloon itself. We now ask: ‘under average circumstances, how big must a
“hot-air-balloon” be to just lift itself ?’ You are to estimate the minimum size of a neutrally buoyant balloon. This
summer I tried this with .6 mil plastic sheeting, which has a mass density of 15.6 grams for each square meter of
surface. Assume your balloon is well approximated as a sphere and that your starting temperature is 300K, which
you then heat to 310K inside the balloon. Recall that, at STP (T = 273.15 K, P = 1 Atm.) , air (an ideal
gas) has a molar volume of 22.4 liters and a molar mass of 29 grams. Start from the ideal gas law P V = nRT
and assume the pressure stays constant at one atmosphere. Notice especially that the surface area (and thus the
structural mass) increases as the square of the radius, but the volume (and thus the ‘lifting ability’) increases as the
radius cubed. Thus, for “big enough” radius, you are sure to win!! ... but at what radius will that (approximately) be?

a.) How big would the balloon have to be to lift itself ? (Trick: find the right natural units!)

b.) How big would the balloon have to be to lift itself and you ? (Trick: start from the previous solution and build
the new solution to the new problem out of the old solution! This is, at its essence, a scaling problem! So much of
Physics works this way. Problems almost always build out of easier problems ... through some simple transformation.
In this case, scaling will lead you to a simple cubic equation and our answer is its root. Simple graphing solves it !)

III. DISCUSSION OF THE PROBLEMS

Dimensional analysis is far more than just getting the units right . It’s primary use is in studying the scaling laws
implicit in the problem. These are the ‘shape relationship’ questions of the problem. They have their origin in the
form of the underlying elemental physical laws. The brute algebraic form of the starting laws actually demands, of
itself, much of how any answer must behave . . . e.g. how the different variables must ultimately sit next to each other
in any solution. Along with this is the topic of ‘natural units’ . Nature has its own sizes! We will always find them in
the problem itself. Learning to recognize the meaning of ‘dimension’ and where it comes from, learning to extract the
scaling laws implicit in dimensional knowledge, and learning to scale any equation according to the ‘natural units’ of
the problem are the lessons of this problem set. You may find these considerations and techniques strange at first -
but you will come to love them and see their depth and power. They are oh-so “Physics-like” ... and, once learned,
there is no looking back!


