CSUC
 Department of Physics
 301A Mechanics

I. INTEGRAL THEOREMS

A. Introduction

The integral theorems of mathematical physics all have their origin in the ordinary fundamental theorem of calculus, i.e.

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}} \frac{d f}{d x} d x=f\left(x_{b}\right)-f\left(x_{a}\right) \tag{1}
\end{equation*}
$$

Using this theorem multiple times we may generalize to 2 and 3 dimensional geometries (or even beyond!). In all cases we find the same general pattern viz. : "The Integral of a derivative yields the "function itself " summed up over all the boundary points." Algebra in multiple dimensions is facilitated by using vector notation such as $\vec{r}(t)$. So also, a function $\mathbf{F}(x, y, z)$ may be written $\mathbf{F}(\vec{r})$. The ordinary rules of partial differentiation govern our calculus e.g.

$$
\begin{equation*}
\frac{d}{d t} F(\vec{r}(t))=\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t} \tag{2}
\end{equation*}
$$

Here also, a judicious choice of notation helps us condense our expressions. In particular, the gradient notation $\vec{\nabla}$ will be of particular use in writing our expressions concisely.

$$
\begin{equation*}
\vec{\nabla} \equiv \hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z} \tag{3}
\end{equation*}
$$

note that the $\hat{\mathbf{x}}$ and the other corresponding terms represent unit vectors in the corresponding directions. The definition expressed in equation (3) gives us a notational tool that allows us to martial our three basic partial derivatives efficiently. In particular, we may write in handy compact notation:

$$
\begin{equation*}
\frac{d F}{d t}=\vec{\nabla} F \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t} \tag{4}
\end{equation*}
$$

B. The fundamental theorem for line integrals

Assertion:

$$
\begin{equation*}
\int_{\vec{r}_{i}}^{\vec{r}_{f}} d \tilde{\mathbf{r}} \cdot \vec{\nabla} F=F\left(\tilde{\mathbf{r}}_{f}\right)-F\left(\tilde{\mathbf{r}}_{i}\right) \tag{5}
\end{equation*}
$$

Proof: Ask yourself . . . how would you actually perform the integral? The answer is that you would supply some parametrization of the curve ' C ' i.e. $\tilde{\mathbf{r}}(s)$ where $\tilde{\mathbf{r}}\left(s_{i}\right)=\tilde{\mathbf{r}}_{i}$ and $\tilde{\mathbf{r}}\left(s_{f}\right)=\tilde{\mathbf{r}}_{f}$ and $\tilde{\mathbf{r}}(s)$ traces out the curve C as $s \subset\left[s_{i}, s_{f}\right]$ proceeds to sweep through its values. Then

$$
\begin{equation*}
d F=d s \frac{d F}{d s}=d s\left(\frac{d \overrightarrow{\mathbf{r}}}{d s} \cdot \vec{\nabla} F\right)=\left(d s \frac{d \overrightarrow{\mathbf{r}}}{d s}\right) \cdot \vec{\nabla} F=d \tilde{\mathbf{r}} \cdot \vec{\nabla} F \tag{6}
\end{equation*}
$$

So

$$
\begin{equation*}
\int_{\vec{r}_{i}}^{\vec{r}_{f}} d \tilde{\mathbf{r}} \cdot \vec{\nabla} F=\int_{s_{i}}^{s_{f}} d s \frac{d F}{d s}=\int_{\tilde{\mathbf{r}}_{i}}^{\tilde{\mathbf{r}}_{f}} d F=F\left(\tilde{\mathbf{r}}_{f}\right)-F\left(\tilde{\mathbf{r}}_{i}\right) \tag{7}
\end{equation*}
$$

The pattern is universal. In each case we consider an integral and then ask how we would actually perform it. A simple parametrization leads immediately to the theorem.

C. Green's Theorem in the Plane

Suppose we have a function $Q(x, y)$ and a region $S_{x y}$ in the $x-y$ plane bounded by a curve C. Suppose further that we must evaluate

$$
\iint_{S_{x y}} d x d y \frac{\partial Q}{\partial y}
$$

Consider the above . . . how would you actually do it? In general, double integrals are evaluated as iterated ordinary one-dimensional integrals.

$$
\begin{aligned}
\iint_{S_{x y}} d x d y \frac{\partial Q}{\partial y} & =\int_{a}^{b} d x \int_{Y_{1}(x)}^{Y_{2}(x)} \frac{\partial Q}{\partial y} \\
& =\int_{a}^{b} d x\left\{Q\left(x, Y_{2}(x)\right)-Q\left(x, Y_{1}(x)\right)\right\} \\
& =\int_{a}^{b} d x Q\left(x, Y_{2}(x)\right)+\int_{b}^{a} d x Q\left(x, Y_{1}(x)\right)
\end{aligned}
$$

From Equation 8 that this is just what we mean by the line integral:

$$
-\oint_{C} Q(x, y) d x
$$

Implicitly here, we traverse the boundary curve C in a counter-clockwise (positive) manner unless otherwise noted.
In summary then:

$$
\iint_{S_{x y}} d x d y \frac{\partial Q}{\partial y}=-\oint_{C} Q d x \quad \text { and } \quad \iint_{S_{x y}} d x d y \frac{\partial P}{\partial x}=\oint_{C} P d y
$$

Finally, we note that by adding these two results we can configure the resulting identity in a very suggestive form:

$$
\begin{gathered}
\iint_{S_{x y}} d x d y\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)=\oint_{C}\left(A_{x} d x+A_{y} d y\right) \\
\text { D. Stokes Theorem }
\end{gathered}
$$

A surface S bounded by a curve C. Consider

$$
\oint_{C} A(x, y, z) d x
$$

How would we do it?

$$
\oint_{C} A(x, y, z) d x=\oint_{C^{*}} A(x, y, z(x, y)) d x=\oint_{C^{*}} \Phi(x, y) d x
$$

If

$$
\Phi(x, y)=A(x, y, z(x, y))
$$

Now

$$
\oint_{C^{*}} \Phi(x, y) d x=-\iint_{S_{x y}} d x d y \frac{\partial \Phi}{\partial y}
$$

and

$$
\frac{\partial \Phi}{\partial y}=\frac{\partial A}{\partial y}+\frac{\partial A}{\partial z} \frac{\partial z}{\partial y}
$$

Notice! The surface normal to S at point (x, y, z) is parallel to

$$
\nabla(z-z(x, y))=\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right) \| \hat{n}
$$

So

$$
\frac{\partial z}{\partial y}=-\frac{n_{y}}{n_{z}}
$$

Recall, that

$$
d \sigma=\frac{d \sigma_{x y}}{n_{z}}
$$

So!

$$
\begin{aligned}
\oint A d x & =-\iint_{S_{x y}} d x d y\left(\frac{\partial A}{\partial y}+\frac{\partial A}{\partial z} \frac{\partial z}{\partial y}\right) \\
& =-\iint_{S_{x y}} \frac{d x d y}{n_{z}} n_{z}\left(\frac{\partial A}{\partial y}-\frac{\partial A}{\partial z} \frac{n_{y}}{n_{z}}\right) \\
& =\iint_{S} d \sigma\left(\frac{\partial A}{\partial z} n_{y}-\frac{\partial A}{\partial y} n_{z}\right)
\end{aligned}
$$

Now, by adding in the equivalent terms from y and z components, we achieve:

$$
\begin{aligned}
& \oint_{C}\left(A_{x} d x+A_{y} d y+A_{z} d z\right) \\
= & \iint_{S} d \sigma\left(\left(n_{y} \frac{\partial}{\partial z} A_{x}-n_{z} \frac{\partial}{\partial y} A_{x}\right)+\left(n_{z} \frac{\partial}{\partial x} A_{y}-n_{x} \frac{\partial}{\partial z} A_{y}\right)+\left(n_{x} \frac{\partial}{\partial y} A_{z}-n_{y} \frac{\partial}{\partial x} A_{z}\right)\right) \\
= & \iint_{S} d \sigma\left(\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) n_{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) n_{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) n_{z}\right)
\end{aligned}
$$

In modern notation this appears substantially condensed as:

$$
\oint \vec{A} \cdot d \vec{r}=\iint_{S} \vec{\nabla} \times \vec{A} \cdot \hat{n} d \sigma
$$

E. Divergence Theorem

For a given function $R(x, y, z)$, consider

$$
\iiint_{V} d x d y d z \frac{\partial R}{\partial z}
$$

How would you do it?

$$
\iiint_{V} d x d y d z \frac{\partial R}{\partial z}=\iint_{S_{x y}} d x d y \int_{Z_{h_{1}}(x, y)}^{Z_{h_{2}}(x, y)} d z \frac{\partial R}{\partial z}
$$

Now we write above as

$$
\iint_{S_{x y}} d x d y\left\{R\left(x, y, z_{h_{2}}(x, y)\right)-R\left(x, y, z_{h_{2}}(x, y)\right)\right\}
$$

Now, we have $d \sigma_{x y}=d x d y=d \sigma \cos (\hat{n} \hat{z})$ or $d \sigma=\frac{d \sigma_{x y}}{n_{z}}$
Now,

$$
\iint_{S_{x y}} d x d y R\left(x, y, z_{h_{h} i}(x, y)\right)
$$

is what we mean by

$$
\iint_{S_{\text {upper }}} d x d y n_{z} R
$$

and if we let \hat{n} always mean the outward pointing unit vector then

$$
-\iint_{S_{x y}} d x d y R\left(x, y, z_{b}(x, y)\right)=\iint_{S_{\text {lower }}} d x d y z_{n} R
$$

So

$$
\iiint_{V o l} d x d y d z \frac{\partial R}{\partial z}=\oint_{S} d \sigma n_{z} R
$$

By addition

$$
\iiint_{V o l} d x d y d z\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)=\oint_{S} d \sigma\left(P n_{x}+Q n_{y}+R n_{z}\right)
$$

Writing in modern notation we have

$$
\int_{V} d V \vec{\nabla} \cdot \vec{A}=\oint_{S} \vec{A} \cdot \hat{n} d \sigma
$$

F. Summary of Integral Identities

At this point we collect our integral identities for easy reference.

1. The fundamental theorem of calculus:

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}} \frac{d f}{d x} d x=f\left(x_{b}\right)-f\left(x_{a}\right) \tag{8}
\end{equation*}
$$

2. The fundamental theorem for line integrals:

$$
\begin{equation*}
\int_{\vec{r}_{i}}^{\vec{r}_{f}} d \tilde{\mathbf{r}} \cdot \vec{\nabla} F=F\left(\tilde{\mathbf{r}}_{f}\right)-F\left(\tilde{\mathbf{r}}_{i}\right) \tag{9}
\end{equation*}
$$

3. Green's theorem in a plane. $S_{x y}$ is a planar area bounded by the curve C :

$$
\begin{equation*}
\iint_{S_{x y}} d x d y\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)=\oint_{C}\left(A_{x} d x+A_{y} d y\right) \tag{10}
\end{equation*}
$$

4. Stokes theorem for an arbitrary vector function $\vec{A}(\vec{r})$ and a surface S bounded by a curve C :

$$
\begin{equation*}
\iint_{S} \vec{\nabla} \times \vec{A} \cdot \hat{n} d \sigma=\oint_{C} \vec{A} \cdot d \vec{r} \tag{11}
\end{equation*}
$$

5. The divergence theorem for any vector function $\vec{A}(\vec{r})$, and a volume V bounded by a surface S :

$$
\begin{equation*}
\int_{V} d V \vec{\nabla} \cdot \vec{A}=\oint_{S} \vec{A} \cdot \hat{n} d \sigma \tag{12}
\end{equation*}
$$

