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I. INTEGRAL THEOREMS

A. Introduction

The integral theorems of mathematical physics all have their origin in the ordinary fundamental theorem of calculus,
i.e. ∫ xb

xa

df

dx
dx = f(xb)− f(xa) (1)

Using this theorem multiple times we may generalize to 2 and 3 dimensional geometries (or even beyond!). In all
cases we find the same general pattern viz. : “ The Integral of a derivative yields the “function itself ” summed up
over all the boundary points.” Algebra in multiple dimensions is facilitated by using vector notation such as ~r(t) . So
also, a function F(x, y, z) may be written F(~r). The ordinary rules of partial differentiation govern our calculus e.g.

d

dt
F (~r(t)) =

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
+
∂F

∂z

dz

dt
(2)

Here also, a judicious choice of notation helps us condense our expressions. In particular, the gradient notation
−→
∇

will be of particular use in writing our expressions concisely.

−→
∇ ≡ x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(3)

note that the x̂ and the other corresponding terms represent unit vectors in the corresponding directions. The
definition expressed in equation (3) gives us a notational tool that allows us to martial our three basic partial
derivatives efficiently. In particular, we may write in handy compact notation:

dF

dt
=
−→
∇F · d

~r
dt

(4)

B. The fundamental theorem for line integrals

Assertion: ∫ ~rf

~ri

dr̃ ·
−→
∇F = F (r̃f )− F (r̃i) (5)

Proof: Ask yourself . . . how would you actually perform the integral? The answer is that you would supply some
parametrization of the curve ‘C’ i.e. r̃(s) where r̃(si) = r̃i and r̃(sf ) = r̃f and r̃(s) traces out the curve C as s ⊂ [si, sf ]
proceeds to sweep through its values. Then

dF = ds
dF

ds
= ds

(
d~r
ds
·
−→
∇F

)
=
(
ds
d~r
ds

)
·
−→
∇F = dr̃ ·

−→
∇F (6)

So ∫ ~rf

~ri

dr̃ ·
−→
∇F =

∫ sf

si

ds
dF

ds
=
∫ r̃f

r̃i

dF = F (r̃f )− F (r̃i) (7)

The pattern is universal. In each case we consider an integral and then ask how we would actually perform it. A
simple parametrization leads immediately to the theorem.
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C. Green’s Theorem in the Plane

Suppose we have a function Q(x, y) and a region Sxy in the x − y plane bounded by a curve C . Suppose further
that we must evaluate ∫∫

Sxy

dx dy
∂Q

∂y

Consider the above . . . how would you actually do it? In general, double integrals are evaluated as iterated ordinary
one-dimensional integrals. ∫∫

Sxy

dx dy
∂Q

∂y
=
∫ b

a

dx

∫ Y2(x)

Y1(x)

∂Q

∂y

=
∫ b

a

dx{Q(x, Y2(x))−Q(x, Y1(x))}

=
∫ b

a

dxQ(x, Y2(x)) +
∫ a

b

dxQ(x, Y1(x))

From Equation 8 that this is just what we mean by the line integral:

−
∮
C

Q(x, y) dx

Implicitly here, we traverse the boundary curve C in a counter-clockwise (positive) manner unless otherwise noted.
In summary then: ∫∫

Sxy

dx dy
∂Q

∂y
= −

∮
C

Qdx and

∫∫
Sxy

dx dy
∂P

∂x
=
∮
C

P dy

Finally, we note that by adding these two results we can configure the resulting identity in a very suggestive form:∫∫
Sxy

dx dy

(
∂Ay
∂x
− ∂Ax

∂y

)
=
∮
C

(Ax dx+ Ay dy)

D. Stokes Theorem

A surface S bounded by a curve C. Consider ∮
C

A(x, y, z) dx

How would we do it?

∮
C

A(x, y, z) dx =
∮
C∗
A(x, y, z(x, y)) dx =

∮
C∗

Φ(x, y) dx

If

Φ(x, y) = A(x, y, z(x, y)).

Now ∮
C∗

Φ(x, y) dx = −
∫∫

Sxy

dxdy
∂Φ
∂y
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and

∂Φ
∂y

=
∂A

∂y
+
∂A

∂z

∂z

∂y

Notice! The surface normal to S at point (x, y, z) is parallel to

∇(z − z(x, y)) = (−∂z
∂x
,−∂z

∂y
, 1) ‖ n̂.

So

∂z

∂y
= −ny

nz

Recall, that

dσ =
dσxy
nz

So!

∮
Adx = −

∫∫
Sxy

dxdy

(
∂A

∂y
+
∂A

∂z

∂z

∂y

)
= −

∫∫
Sxy

dx dy

nz
nz

(
∂A

∂y
− ∂A

∂z

ny
nz

)
=
∫∫

S

dσ

(
∂A

∂z
ny −

∂A

∂y
nz

)
Now, by adding in the equivalent terms from y and z components, we achieve:

∮
C

(Ax dx+Ay dy +Az dz)

=
∫∫

S

dσ

((
ny

∂

∂z
Ax − nz

∂

∂y
Ax

)
+
(
nz

∂

∂x
Ay − nx

∂

∂z
Ay

)
+
(
nx

∂

∂y
Az − ny

∂

∂x
Az

))
=
∫∫

S

dσ

((
∂Az
∂y
− ∂Ay

∂z

)
nx +

(
∂Ax
∂z
− ∂Az

∂x

)
ny +

(
∂Ay
∂x
− ∂Ax

∂y

)
nz

)
In modern notation this appears substantially condensed as:

∮
~A · d~r =

∫∫
S

~∇× ~A · n̂ dσ

E. Divergence Theorem

For a given function R(x, y, z), consider ∫∫∫
V

dx dy dz
∂R

∂z

How would you do it? ∫∫∫
V

dx dy dz
∂R

∂z
=
∫∫

Sxy

dx dy

∫ Zh2 (x,y)

Zh1 (x,y)

dz
∂R

∂z



4

Now we write above as ∫∫
Sxy

dx dy {R(x, y, zh2(x, y))−R(x, y, zh2(x, y))}

Now, we have dσxy = dx dy = dσ cos(n̂ẑ) or dσ = dσxy

nz

Now, ∫∫
Sxy

dx dy R(x, y, zhhi(x, y))

is what we mean by ∫∫
Supper

dx dy nz R

and if we let n̂ always mean the outward pointing unit vector then

−
∫∫

Sxy

dx dy R(x, y, zb(x, y)) =
∫∫

Slower

dx dy znR

So ∫∫∫
V ol

dx dy dz
∂R

∂z
=
∮
S

dσ nz R

By addition ∫∫∫
V ol

dx dy dz

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
=
∮
S

dσ (P nx + Qny + Rnz)

Writing in modern notation we have ∫
V

dV ~∇ · ~A =
∮
S

~A · n̂ dσ

F. Summary of Integral Identities

At this point we collect our integral identities for easy reference.

1. The fundamental theorem of calculus: ∫ xb

xa

df

dx
dx = f(xb)− f(xa) (8)

2. The fundamental theorem for line integrals:∫ ~rf

~ri

dr̃ ·
−→
∇F = F (r̃f )− F (r̃i) (9)

3. Green’s theorem in a plane. Sxy is a planar area bounded by the curve C :∫∫
Sxy

dx dy

(
∂Ay
∂x
− ∂Ax

∂y

)
=
∮
C

(Ax dx+ Ay dy) (10)
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4. Stokes theorem for an arbitrary vector function ~A(~r) and a surface S bounded by a curve C:∫∫
S

~∇× ~A · n̂ dσ =
∮
C

~A · d~r (11)

5. The divergence theorem for any vector function ~A(~r), and a volume V bounded by a surface S :∫
V

dV ~∇ · ~A =
∮
S

~A · n̂ dσ (12)


