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I. NOTES ON ORTHOGONAL CURVILINEAR COORDINATES

A. Introduction

Locating a unique position in 3-D space requires choosing three numbers or “coordinates” for its specification.
Although using Cartesian coordinates is, by far, the most common and familiar choice, coordinates may actually be
chosen in a very wide variety of ways. In general then, let us signify our choice simply as the set of three numbers
{q1, q2, q3}. We understand implicitly, of course, that any selection of coordinates can be transformed into any other
set by direct algebraic transformation. That is, all choices are equivalent in content.

Next, we observe that if we hold any two of the ‘q-coordinates’ constant, but now increase the third slightly (i.e.
infinitesimally) . . . that the position vector starts to move “infinitesimally” along a ‘q-curve.’ The respective tangents
to the 3 possible ‘q-curves’ which emerge from any given point now define three distinct directions. In the general
case, these directions need not be perpendicular to each other and that introduces the study of generalized curvilinear
coordinates. However, in those special cases that these three directions are always mutually orthogonal, we say that
we are dealing with an ‘orthogonal curvilinear coordinate system.’ Such systems really are quite common and have
such a pronounced utility that they are well worth our detailed study.

Now notice that if we make simultaneous infinitesimal increases in the coordinates (i.e. q1 → q1 + dq1, q2 →
q2 + dq2, q3 → q3 + dq3) that the position vector suffers an infinitesimal displacement ~r → ~r + d~r where

d~r =
∂~r

∂q1
dq1 +

∂~r

∂q2
dq2 +

∂~r

∂q3
dq3

The vectors ∂~r
∂qi

are along the tangent direction mentioned above — but they are not of unit length. We introduce

new symbols to make their lengths explicit. We define the symbol ‘h′i to be the length of ∂~r
∂qi

thus hi =
√

∂~r
∂qi
· ∂~r

∂qi
and

we may finally write ∂~r
∂qi

= hiâi where âi is the unit tangent vector to the ith q—curve. Now summarize: We have

d~r =
∂~r

∂q1
dq1 +

∂~r

∂q2
dq2 +

∂~r

∂q3
dq3

which may be written

d~r = â1 h1 dq1 + â2 h2 dq2 + â3 h3 dq3

where

h2
i =

∂~r

∂q1
· ∂~r
∂q1

Since we are discussing orthogonal coordinates we have âi · âj = δij and âi × âj =
∑

k εijkâk.

1. Discussion

First note that hi dqi always has the dimension of length — indeed it is the physical distance that the ~r—vector
moves through as we change qi → qi + dqi holding the other two coordinates constant.

Ultimately, all operations (e.g. gradient, divergence, curl . . . ) can be known entirely in terms of the 3 hi — thus
they play a central role for curvilinear orthogonal coordinates.
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B. Vector Differential Operations in Curvilinear Coordinates

1. Basic Definitions

Start from basic definitions: ∂~r
∂qi

= hi âi and dot both sides with êj and obtain ∂xj

∂qi
= hi êj · âi. We may write

êk =
∑

i âi

(
1
hi

∂xi

∂qi

)

2. Gradient

We know the gradient in Cartesian coordinates ~∇ =
∑

k êk
∂

∂xk
. Now we simply transform to ‘q-coordinates’ using

∂
∂xi

=
∑

j
∂qj

∂xk

∂
∂qj

.
Now combine with the above to obtain

∇ =
∑

k

(∑
i

âi
1
hk

∂xk

∂qi

) ∑
j

∂qj
∂xk

∂

∂qj


=
∑
ij

âi
1
hi

(∑
k

∂xk

∂qi

∂qj
∂xk

)
∂

∂qj

but
∑

k
∂xk

∂qi

∂qj

∂xi
= ∂qj

∂qi
= δij So we recover

∇ =
∑

i

âi
1
hi

∂

∂qi

3. Curl

Start with the observation that: âi = hi∇qi (by inspection) so that ∇× â = ∇hi×∇qi +hi∇×∇qi which implies
that ∇× âi = ∇hi ×∇qi = 1

hi
∇hi × âi Since any vector ~A may be expressed as ~A =

∑
i Ai âi Hence we have

∇× ~A =
∑

i

(∇Ai + âi +Ai∇× âi)

or

∇× ~A =
∑

i

1
hi
∇(hiAi)× âi

but also

∇ =
∑

k

âk
1
hk

∂

∂qk

so we write

∇× ~A =
∑
ik

1
hi

1
hk

∂

∂qi
(hiAi)âk × âi

but

âk × âi =
∑

j

εijk âk

so

∇× ~A =
∑
ijk

εijk
1

hihk

∂

∂qk
(hiAi)âj
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. Finally, we have then

∇× ~A =
∑
ijk

εkij
1

hihjhk
hj âj

∂

∂qk
(hiAi).

Which is commonly written

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣
h1â1 h2â2 h3â3

∂
∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3

∣∣∣∣∣∣
4. Divergence

Use the general vector identity

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B

where we apply it to the identity

â3 = â1 × â2.

So

∇ · â3 = â2 · ∇ × â1 − â1 · ∇ × â2

= â2 · ∇ × â1 − â1 ·
(

1
h2
∇h2 × â2

)
=

1
h1h3

∂h1

∂q3
+

1
h2h3

∂h2

∂q3

=
1

h1h2h3

∂(h1h2)
∂q3

Then since ~A =
∑

i Ai âi we can write

∇ · ~A =
∑

i

(∇Ai · âi +Ai∇ · âi)

=
∑

i

(
1
hi

∂Ai

∂qi
+Ai∇ · âi

)
=

1
h1h2h3

(
∂

∂q1
(A1 h2 h3) +

∂

∂q2
(A2 h3 h1) +

∂

∂q3
(A3 h1 h3)

)
Finally, if ~A = ∇φ we have

∇2φ =
1

h1 h2 h3

(
∂

∂q1

(
h2 h3

h1

∂φ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂φ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂φ

∂q3

))

C. Curvilinear Coordinates II

1. A Second Approach to Differential Operators

We could deduce all our identities in a much more straight forward and simple way if only we knew the generic
derivative ∂âi

∂qj
. Remarkably, this is fairly difficult to find!

Insight into how to do it can be gained from watching basic geometric properties. Since {â1, â2, â3} are always
perpendicular and always of unit length, the manner in which they change together is highly restricted. In particular,
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we must always preserve:

âi · âj = δij .

Notice that in any infinitesimal change, then, we must have: dâi · âj + âi · dâj = 0, and so dâi · âi = 0 This condition
preserves all our unit unit lengths.
Altogether, these imply, then:

dâ1 = â2 (â2 · dâ1) + â3 (â3 · dâ1)
dâ1 = â3 (â3 · dâ2) + â1 (â1 · dâ2)
dâ3 = â1 (â1 · dâ3) + â2 (â2 · dâ3)

Since any vector (even infinitesimal ones) can be expanded on the three basic vectors. Now let’s simply define the
numbers:

{dθ1, dθ2, dθ3}

by:

dθ1 = â3 · dâ2 (= −dâ3 · â2)
dθ2 = â1 · dâ3 (= −dâ1 · â3)
dθ3 = â2 · dâ1 (= −dâ2 · â1)

and then we can write

dâ1 = dθ3 â2 − dθ2 â3

dâ2 = dθ1 â3 − dθ3 â1

dâ3 = dθ2 â1 − dθ1 â2

which can be summarized by using the vector d~θ defined by

d~θ = dθ1â1 + dθ2 â2 + dθ3 â3

so that

dâ1 = d~θ × â1

dâ2 = d~θ × â2

dâ3 = d~θ × â3

which is simple and physical. This result has the compelling interpretation that any change in orientation of our
orthogonal triple (â1, â2, â3) is, in effect, a rotation. The vector d~θ is our rotation vector. We write, then, in general:

dâi = d~θ × âi

We cross the definition with âi and sum over i to achieve∑
i

â×dâi =
∑

i

âi × (d~θ × âi)

=
∑

i

(d~θ − âi âi · d~θ)

= 2d~θ
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then

d~θ =
1
2

∑
i

âi × dâi

We can now find the right hand side from considering the following basic definition

∂~r

∂qi
= hi âi.

So first

~∇× ∂~r

∂qi
= ~∇× (hi âi)

= ~∇hi × âi + hi
~∇× âi

= 2 ~∇hi × âi

But also . . .

~∇× ∂~r

∂qi
=
∑

j

(
âj ×

1
hj

∂

∂qj

∂~r

∂qi

)

=
∑

j

(
âj ×

1
hj

∂

∂qi

∂~r

∂qj

)

=
∑

j

âj ×
1
hj

(
∂hj

∂qi
âj + hj

∂âj

∂qi

)
=
∑

j

âj ×
∂âj

∂qi

So

∑
j

âj ×
∂âj

∂qi
= 2 ~∇hi × âi

and now . . . Since

∑
i

dqi
∂âj

∂qi
= dâj

we multiply above by dqi and sum over i to conclude

1
2

∑
j

âj × dâj =
∑

i

dqi ~∇hi × âi = d~θ
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D. Summary

We conclude that an orthogonal triad of unit vectors must change in a very restricted way - in fact it must change
as a rotation. The key idea has been to identify the rotation vector d~θ defining that rotation. Once we have done
that every thing else follows as we summarize next. We have shown that in any infinitesimal change there exists d~θ
such that:

dâi = d~θ × âi where

d~θ =
∑

j

dqj ~∇hj × âj

So, for example, if we specify that only one particular coordinate, say qj , changes i.e. qj → qj + dqj , then

dâi = dqj (~∇hj × âj)× âi

or, as we finally conclude,

∂âi

∂qj
= (~∇hj × âj)× âi

and from this result we may build all of the other vector differential identities in a straight forward manner.


