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CSUC
Department of Physics
301A Mechanics:

Notes on Dimensional Analysis and Units

I. INTRODUCTION

Physics has a particular interest in those attributes of nature which allow comparison processes. Such qualities
include e.g. length, time, mass, force, energy...., etc. By “comparison process” we mean that although we recognize
that, say, “length” is an abstract quality, nonetheless, any two “lengths” may successfully be compared in a
generally agreed upon manner yielding a real number which we sometimes, by custom, call their “ratio”. It’s crucial
to realize that this outcome it isn’t really a mathematical ratio since the participants aren’t numbers at all, but
rather completely abstract entities . . . viz. “Physical Extent in Space”. Thus we undertake to represent physical
qualities (i.e. certain aspects) of our system with real numbers. In general, we recognize that only ‘lengths’ can
be compared to ‘other lengths’ etc - i.e. that the world divides into exclusive classes (e.g. ‘all lengths’) of entities
which can be compared to each other. We say that all the entities in any one class are ‘mutually comparable’
with each other. These physical numbers will be our basic tools for expressing the relationships we observe in
nature. As we proceed in our understanding of the physical world we will come to understand that any (and
ultimately every ! ) properly expressed relationship (e.g. our theories) has several universal aspects of structure
which we will study using what we may call “dimensional analysis”. These structural aspects are of enormous
importance and will be, as you progress, among the very first things you examine in any physical problem you
encounter. Of course, as you have already learned in your foundational classes, we, too, will find ourselves
introducing the “standard-comparison-amounts” or “unit amounts” with which you are familiar. It will be a central
task and aim of these notes, however, to show you that “unit amounts” play only an intermediate and sociological
function (principally human communication) . . . but really have no other role to play in physics. We might say
that they have no ‘physical content’ whatever. This is a great shock to those who haven’t proceeded very far in
their physical studies! In fact, as we will soon find out, all “units” will utterly disappear from any well expressed
relationship and be replaced by comparisons between quantities having their origin solely inside the problem
itself. We will express this by saying that every physical problem determines its own intrinsic natural units. We
might begin (merely by casual reflection) by noting here that the choice of units is completely arbitrary - while
nothing important in “Nature” is arbitrary at all (and must therefore disappear from any well crafted expression ...) !

II. LINEAR COMPARISON PROCESSES / UNITS ... AND CHANGING UNITS

These notes will attempt consistency of notation, and I have chosen square brackets e.g. [X] to designate ‘abstract
entities’ out there in Nature (i.e. these are not numbers ...). These are the abstract things we find out there in the
world and want to talk about ... such as a “physical extent of space”. Any ‘comparison process’ results, then, in a
‘real number’ which is subject to the usual laws of algebra and will be represented by symbols without brackets, e.g. w.

Let the collection of symbols [
X

Y

]
= w

denote that the abstract length of [X] has (somehow) been compared with the abstract length [Y ] yielding the real
number w. We say w is the measure of [X] with respect to [Y ]. The symbol

[
X
Y

]
indeed looks like a “ratio” but isn’t

because the things inside aren’t numbers! The comparison process does, however, suggest the interior notion of just
how many times the abstract quantity [Y ] fits into the abstract quantity [X] and that is the numerical ratio idea
too. This is the essence of Theoretical Physics (!) which attempts to map (or “overlay”) mathematical structures
onto our perceptions of Nature. Notice, especially, that no notion of unit is ever needed here! Please be aware that
there is no difference in kind what-so-ever in comparing our length to another length ... and the act of comparing our
length to some arbitrarily chosen unit length. Unit lengths are not special in any way ... they are just another length.
The problem will turn out to be that, if we can choose one arbitrary unit ... then we can, at a later time (and on
a whim...), choose yet another arbitrary one ... and we must then relate those two outcomes. Let’s begin the discussion.
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A. The Properties of Linear Comparison Processes

Suppose, then, we let the collection of symbols: [
X

UL

]
= x

denote that the abstract length [X] has been compared with the abstract-standard-comparison-amount [UL] yielding
the real number x. We say x is the measure of [X] with respect to [UL]. If we had used a different standard
comparison amount (unit), say [U ′L] , we would have obtained a different real number x′ for the same [X]. Clearly,
different numbers may represent the same chosen aspect of the very same physical entity [X]. This is where the
confusion enters. We need to relate x and x′.

For reasons of simplicity most (not all !) of the comparison processes in general use today allow us to relate the
numbers obtained using different units in the following highly convenient stylized manner - and we may call all such
processes Linear Measures. If [UL] and [U ′L] are two such unit amounts, then a Linear Measuring Process is one
such that the following is taken to be true:

x′ =

[
X

U ′L

]
=

[
X

UL

] [
UL

U ′L

]
= x

[
UL

U ′L

]
(1)

So that x′ = x
[
UL

U ′
L

]
. We generally call

[
UL

U ′
L

]
a “conversion factor.” Our foundational starting rule may be

summarized as follows :

Rule 0)

(new#) = (old#)

[
Old Unit

New Unit

]
(2)

A concrete example of this would be: 32 = 9.8
[
meter
foot

]
= 9.8 · (3.28).

These properties are so much in accord with customary practice that they rarely merit mention. Yet, one should
bear in mind that they are true only because we carefully chose a specific kind of comparison process. Actually,
we needn’t have used special “unit amounts” in our definition of Linear Measures. We only did that to make the
discussion familiar. So let us take a tiny step back and enumerate now in full generality the simple properties of
Linear Measuring Processes.

To get the conversation going, we let [X] , [Y ] , [Z] denote any mutually comparable quantities. We then have:

Rule 1) [
X

Y

]
=

[
X

Z

] [
Z

Y

]
for any [Z] (3)

Rule 2)

1 =

[
X

X

]
. . . and so with Rule 1) . . . 1 =

[
X

Y

] [
Y

X

]
implying

[
Y

X

]
=

([
X

Y

])−1
(4)

And now using both rules above, it follows that we have:

Rule 3)

[
X

Y

]
=

[
X

Z

] [
Z

Y

]
=

[
X
Z

][
Y
Z

] for any [Z] (5)
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And now using Rule 1) twice we observe:

Rule 4)

[
X

Y

]
=

[
X

Z1

] [
Z1

Y

]
=

[
X

Z2

] [
Z2

Y

]
for any [Z1] and [Z2] (6)

Now this is very useful because if we were to choose for [Z1] and [Z2] two unit amounts, say: [U1] and [U2] , and if we

now denote x1 ≡
[

X
U1

]
and x2 ≡

[
X
U2

]
then, using Rule 4), we can write:

Rule 4.1)

x1

[
U1

Y

]
= x2

[
U2

Y

]
for any [Y ] (7)

NOTA BENE ! . . . many a clever person would like to remember this with the rule . . .

(new#) [New Unit] = (old#) [Old Unit]

But this is not quite true as stated here because . . . well . . . [New Unit] is not a number and we can’t use it in
arithmetic ! It does not fall within the realm of our ordinary algebra. Of course . . . logic and reason notwithstanding
. . . many of us secretly ‘remember it’ this way and we “get away with it” because it looks so much like Rule 4.1).
What we really mean (but most people don’t understand) will be seen and understood much better if we notationally
use a third unit amount symbol for [Y ] (which we may now call [Unext]) ... then the whole thing “looks like”:

Rule 4.2)

(new#)

[
New Unit

Unext

]
= (old#)

[
Old Unit

Unext

]
(8)

A concrete example of this would be, for example: 150 cm = 1.5 m .

It is exactly these unit symbols that you thought were so familiar . . . but that we must now understand much more
fully. They were actually introduced by the great (!) Scottish physicist James Clark Maxwell as a clever way to keep
track of conversion factors. They are actually numbers ... and the idea is so clever that most people don’t understand
them to this very day! Exercise for the reader: take Rule 4.2) and then use Rule 3) to directly recover Rule 0).
As we will come to understand, a unit symbol has a hidden partner. The cm symbol used above stands for the
comparison between the centimeter unit length and the next unit you may wish to choose some day. We don’t express
that next unit explicitly . . . so it is a presence you don’t see. It is a hidden partner ! In explicitly mentioning the name
“centimeter” it tells you that the last unit used was the centimeter. This you knew! But then . . . it has an unnamed
function which is to act as a place-holder for the conversion factor you’ll need should you someday choose a new (but
not yet chosen ! ) final unit. This trick is so clever . . . and so rarely mentioned . . . that it has fooled many generations
of professional scientists. Notice carefully that in the innocent looking expression above 150 cm = 1.5 m . . .
there are actually three units present. There are two that you see . . . and the hidden partner of the yet unchosen unit
that you don’t see. We will summarize all these properties below and you will see that you have little or nothing to
learn! The usage will be only what you are used to and familiar with. It is only that you probably didn’t understand
fully what you were doing all those years . . . even though you knew well how to do it.

Any number obtained from a comparison process and depending on the choice of some arbitrarily chosen and
yet unspecified unit we will now call a “Dimensional Quantity”. Combining dimensional quantities creates further
dimensional quantities. For example, velocity is a (length # / time #) and mass density is a (mass # / volume
#). We commonly speak of the ‘net dimension’ of a quantity. What we really mean by this locution is the required
combination of conversion factors from Rule 0) that we would find necessary to apply in order to find the representation
number in some new choice of units. The technical term for all of this is the “Dimensional Exponent” belonging to
the quantity. For example, the dimensional exponent of d 2x/dt 2 is (length)1(time)−2. You probably knew this.
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III. THEORIES, EQUATIONS, AND CONSTANTS OF PROPORTIONALITY

A theory is a statement of a pattern among measured numbers which we conjecture to be true or nearly so. The
preferred mode of expression these days is in terms of equalities though previously (with great wisdom) physicists
of the past stuck to using proportionalities. What’s the difference? The point is that physical equations having
any real content relate differing physical quantities measured out in different (and arbitrary) units. By sticking to
proportionalities one sidesteps the whole issue of conversion factors! Customary practice nowadays however is to start
from a chosen fundamental defining equation (i.e. a statement expressed as an equality . . . ) - which then, virtually
always, introduces a new constant of proportionality. This is where yet more confusion enters.

example:

Suppose (like Galileo !), by a long and tedious examination of the manner in which “things fall”, we were to finally
conjecture that: z ∝ t2 . . . i.e. that a direct proportionality between the distance fallen and the square of the time
elapsed is a good model of Nature. Now if we choose to proceed another step and measure out length in meters and
time in seconds we could actually measure the implied constant of proportionality and would arrive at the following
equality :

z = 4.9 t2 (units: length in meters, time in seconds)

Of course, it might come to pass that on some later day we were motivated (for whatever reason) to express our
equation had we chosen to use other units. How then do we change over to the relationship that would have appeared
when using those new and different numbers . . . but without going through all those tedious direct measurements
again? A really confusing point that will emerge here is that there exists both a ‘long hand’ and a ‘shorthand’ way
to effect this. For reference purposes I will demonstrate both of these in some detail - they are, of course, completely
equivalent and the use of one or the other is merely a matter of taste.

1. Long-Hand (old fashioned) Active Method of changing units.

First, we begin by assuming that our equation has been expressed in some specific set of units, and that all constants
are, accordingly, simple known real numbers, e.g. as before . . .

z = 4.9 t2 ( current units: meters, seconds)

Now we decide to choose new units...say [UL] for lengths and [UT ] for times.
Next, we express old measures of variables in terms of new measures:

z =

[
Z

Meter

]
=

[
Z

UL

] [
UL

Meter

]
= z′

[
UL

Meter

]
(9)

t =

[
T

Sec

]
=

[
T

UT

] [
UT

Sec

]
= t′

[
UT

Sec

]
(10)

Now insert these new expressions for the old measures into the old equation at each of their occurrences in the
equation, . . . finally arriving at:

z′
[

UL

Meter

]
= 4.9

(
t′
[
UT

Sec

])2

(11)

Finally, collect all of the accumulated conversion factors next to the old constant of proportionality:

z′ = 4.9

([
UT

Sec

])2[
UL

Meter

] t′ 2 = 4.9

([
Meter

UL

]) 1 ([
Sec

UT

])−2
t′ 2 (12)

In the last step we used the simple properties of linear measures derived above. Our crucial recognition at this point
is that the old constant of proportionality times the accumulated set of conversion factors defines the new constant
of proportionality. In modern condensed notation we write: z′ = 4.9m

s2 t′ 2 .
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2. Short-Hand (modern) Passive Method of changing units

Here we start (again) with the recognition that all physical constants of proportionality have their origin in some
fundamental defining equation. This defining equation uniquely determines by its form the set of conversion factors
which the proportionality must ultimately accumulate as we go about changing units (see the ‘Active Conversion’
just above). This accumulated net ‘dimensional exponent’ is now traditionally listed alongside each physical constant.
BUT! (. . . and here comes the sticking point!) what custom has conveniently allowed us to forget is that the dimensional
symbols “m”, “kg”, “sec” ...etc. are really just short-hand notation for the more cumbersome conversion factor
symbols used above (I made them cumbersome on purpose to draw your attention . . . ), i.e.:

m ≡
[
Meter

UL

]
sec ≡

[
Second

UT

]
kg ≡

[
kilogram

UM

]
etc.

Now! . . . when we write out an equation, by merely including the dimensional symbols along side our constants, we
can automatically arrive at what a tedious long-hand changing of units must necessarily have given us also (convince
yourselves of this crucial fact!). As we emphasized above, this trick is so clever that most people (even scientists
!) . . . “don’t get it” ! The crucial understanding is, again, that those unit symbols are actually conversion factors
between the last used (and thus fully “known”) set of units and the next to be chosen (but not yet chosen . . . so not
yet known) set of units. In using this method we agree to drag along an undetermined but precisely placed conversion
factor symbol (the unit symbol) which stands ready to be used at any moment we might choose. Talk about clever!
It may sound cumbersome at first . . . but it beats cold trying to guess at the end of the calculation which conversion
factors you need.

our example again! . . . but this time using a passive method.

We start by referring to standard tables or listings where we read (as usual) that the constant of gravitational
acceleration is listed as 9.8 m 1 s−2. So in ‘meter’ and ‘second’ units we may immediately write down

z = 1
2 9.8 t2

since in choosing meters and seconds as our “ultimate units” the conversion factors {m, sec} both take on the value
of unity (i.e. they are both the number “1” ), and where, in this equation, our symbols mean:

z ≡
[

Z

meter

]
t ≡

[
T

second

]
But then, in [UL] and [UT ] units, we must include the factors {m, sec} because their numerical values won’t be

determined until we make definite choices for {[UL] , and [UT ] } . Accordingly, we write :

z′ =
1

2
9.8 m 1sec−2 t′ 2

which is precisely where we arrived before, though now we started with the much more “abstract” meanings:

z′ ≡
[
Z

UL

]
t′ ≡

[
T

UT

]
m ≡

[
Meter

UL

]
sec ≡

[
Second

UT

]
NOTA BENE: In general usage we often simply omit the primes on z′ and t′ for brevity or out of carelessness.

I include them here explicitly to emphasize that primed and unprimed symbols are representing different (though
proportional) numbers.

Please pause here to internalize a crucial fact. The span of real-number values that z′ will pass through in describing
our experiment has been scaled by a factor from the values that z passes through. That scaling factor is precisely the

number m ≡
[
Meter
UL

]
. That is, each value z′ ≡

[
Z
UL

]
=
[

Z
meter

] [
meter
UL

]
= z m . This may be your first realization

that unit conversion is really a scaling process. Scaling relationships will be a crucial piece of the information about
how the world fits together. The realization that the ever-so-humble unit conversion process and the ever-so-mighty
scaling relationship process are two sides of the same coin is shocking for sure!
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A. Discussion

a) Disadvantages of the passive method:

I must already know the dimensional exponent of every constant I employ. If I don’t know this I must and (may
always!) rely on the active method.

b) Advantages of the passive method:

(a) Philosophical: Since Nature doesn’t force any particular set of units upon us . . . it is artificial and misleading
to make any arbitrary choices (say M.K.S.). Indeed, by making the choice you disguise the truth that no such choice
is required. The passive method of writing equations provides a method for writing equations in an unbiased manner.
Notice, the equation

z = 4.9 m 1 sec−2 t 2

cannot truly be said to be in any particular set of units...e.g. the conversion factors: m and sec have not yet been
specified, i.e. the ultimate set of units in which things are to be expressed has been left open. Merely by carrying
along the (as yet unspecified) numbers ‘m’ and ‘sec’ in my algebra I am assured of arriving at conclusions which are
valid for any set of units I should ultimately choose. This is a proper reflection of the choice Nature gives us.

(b) Algebraic: By allowing physical constants to carry a dimensional exponent we observe that both sides of any
equation must have the same net dimensional exponent. Thus, we can check our algebra for errors. This is the old
“comparing units” trick. However! It is much (much!) more than just the “comparing units” trick ! By introducing
how the equation must scale . . . we can discern much about how the solution to this equation must scale too. This
will give us “scaling laws” (a simple example is Kepler’s Third Law) and will allow us to scale our numbers to those
that are simplest for numerical computation (i.e. near “1”). This will lead us to the idea of “Natural Units”.

IV. NATURAL UNITS

While we have already stated that imposing our ‘arbitrary’ choice of units on Nature would certainly be artificial
and ugly (poor physics !) - nonetheless it remains true that Nature suggests ‘natural units’ for itself. In each separate
problem we encounter, there emerge ‘natural sizes’ in that problem. For example, in the study of planetary motion,
using the ‘meter’ to measure off distance from the sun is absurd . . . the natural unit would surely be the radius of the
orbit. Similarly, in studying the spectrum of hydrogen, measuring the mass of the electron in kilograms couldn’t be
more ridiculous - the electron is the central object of study so let its mass be the unit of mass. We will notice that in
‘Natural Units’ all measured numbers, in fact, come out near ‘unity’ e.g. a number like 2.86 instead of 4.38 × 10 44.
For computer work we want all numbers to be roughly between say 0.1 and 10.0 . . . . This is always possible!
(a neat theorem assures us of this, which we’ll prove later). All numerical work and a good bit of algebraic work is
enormously simplified by first finding natural units. More importantly though, by using Natural Units the essential
physical relationships will stand out much more clearly because all of the arbitrary and distracting ‘crud’ has been
removed from our algebra. Finding natural units is simple and can be effected either via the long-hand ‘Active’ way
or the short-hand ‘Passive’ way. Understand here that the choice of natural units is not perfectly unique - though all
choices will be ‘near-unity’ multiples of one another (e.g. using either radius, diameter, or circumference to describe
a circle is ‘natural’).

example:

To illustrate the methods, I’ll use as my descriptive example equation:

1

2
m

(
dx

dt

) 2

+ mg x = E (13)

You will recognize that this comes from our falling body problem again.
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A. Finding Natural Units: a practical approach

Step 0: Philosophical Orientation
Nature doesn’t depend on any human choice of units. Therefore, as we shall find, all physical equations will have

their elemental expression in “passive” dimension-full form or (even better) as proportionalities. That is, they are not
“in” any particular set of units. Nonetheless, the symbols in our equations are real numbers. So that, in principle, we
understand that we have measured lengths, times, or whatever against some set of reference amounts. The confusing
thing is that we don’t have to tell anybody (even ourselves!) just what the current choices are that have been made!
The way we do this strange thing is to carry along ‘as-yet-undetermined’ conversion factors which will convert us to
‘as-yet-unspecified’ units. These are (or more precisely ‘represent’) the “hidden partners” (i.e. the unspecified unit
amounts) throughout our algebra. In the problem at hand we have three free dimensions: length, time, mass. Let
the symbols [UL], [UT ], [UM ] represent the definite but ‘as-yet’ unspecified unit amounts (the hidden partners).

Accordingly, the symbols x, t, and m actually mean:

x ≡
[
Abstract X Displacement

UL

]

t ≡
[
Abstract T ime Displacement

UT

]

m ≡
[
Abstract Mass

UM

]
Step 1: Identify Your Constants
All our equations will have descriptive constants embedded in them. These constants are the means by which the

‘sizes’ in Nature enter our equations just as the algebraic structure of the equation expresses those essential physical
relationships which we will call “shape” relationships. These constants can be universal numbers (g), numbers specific
to the system (m), or even specifics of the given motion (E). Dimensional constants change their numerical values
depending on the choice of units employed and we want the important “natural sizes” in our problem to have ‘near
unity’ numerical values. Our present task ultimately comes down to choosing a specific set of units such that the
numerical values of these constants comes out to be unity (or very nearly unity). At this step, then, we identify our
problem’s constants (viz. , for this problem, { g, m, and E} ) .

Step 2: Introduce a new set of “Natural” Units . . . but which are not yet known!
We next wish to introduce a ‘new’ set of units which will ultimately be our ‘Natural Units’ - but we must do it

“formally” (i.e. abstractly) . . . at this step since we don’t know which ones we want yet! To do this I first introduce
abstract (and as yet unknown) unit amounts for our three fundamental dynamical dimensions; length, time, and mass:

[L] [T ] [M ]

and then also the new symbols L, T , and M where these symbols stand for true numbers (not abstract amounts)
because the definite (but still unknown) abstract amounts will now have been compared to our hidden partner amounts
and are, consequently, defined by:

L ≡
[
L

UL

]
T ≡

[
T

UT

]
M ≡

[
M

UM

]
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Step 3: Scale the Variable Quantities
Now ... whenever we encounter the variable numbers x, t, . . . we may write by simple algebra:

x =
( x
L

)
L = x′ L where we define x′ ≡ x

L

t =

(
t

T

)
T = t′ T where we define t′ ≡ t

T

It’s important to notice that (here, I have taken length as an example)

x′ ≡ x

L
=

[
X
UL

]
[

L
UL

] =

[
X

L

]
(. . . where we have used Rule 3) )

so that, truly, x′ is the measure of [X] with respect to [L] etc. . Notice especially that the numbers x′ and t′ are
no longer “dimensional”! As the comparison of a definite amount to another definite amount ... the hidden partners
have dropped out. We may now take our starting equation and substitute in for x and t in terms of x′ and t′.

Notice, as we begin, that “compound expressions” are re-expressed just as one would expect e.g.:

dx

dt
→ dx′L

dt′T
=

dx′

dt′

(
L

T

)
Our starting equation is now re-expressed as:

1

2
m

(
dx′

dt′

) 2 (
L

T

) 2

+ mg x′ L = E (14)

Step 4: Render the Equation Dimensionless

Every passively expressed equation has some net dimensionality. The one we are working with has the dimension
of energy. This means that its net dimensionality expressed in basic dimensions is (mass) · (length)2 · (time)−2 .
We now form the unit of our equation’s dimension out of our new (and yet to be discovered) L, T, M units and divide
the equation by it. So, in the case at hand, we divide the entire equation by

(
M L2 T−2

)
. Once we have done this

we will have rendered the equation completely dimensionless . It now appears in the following form:

1

2

m

M

(
dx′

dt′

) 2

+
m

M

g

LT−2
x′ =

E

M L2 T−2
(15)

Step 5: Identify the Constant “Clusters”

At this point we observe that we have accumulated collections or “Clusters” of constants.

In our equation I observe three different clusters of constants:

m

M
,

g(
L
T 2

) , and
E

M
(
L
T

) 2
These Clusters must be dimensionless since the entire equation now is . . . and the variables we’re now using {x′ , t′}

are too ! Accordingly, the clusters are definite numbers and their values will depend on what we choose for L, T, M .
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Step 6: Set the Clusters Equal to Unity...and Discover your Natural Units.

At this point we now have the freedom to make our constants “numerically disappear from view” so to speak
. . . simply by specifying that the constant clusters shall take on the simplest of all numerical values . . . namely unity.
Once we make this specification, we may then “back-solve” for L, T, M in terms of our problem’s constants. In our
case there are three units to adjust and also three constant clusters whose ultimate value we wish to specify.

(a) 1 = m/M so! M = m

(b) 1 = g T 2

L so! L
T 2 = g

(c) 1 = E

M ( L
T )

2 so! . . . (by combining) L = E
mg

(d) . . . and now combining again . . .T =
√
L/g =

√
E/(mg2)

Summary:

We conclude that our equation can be put in the following simple form :

1

2

(
dx′

dt′

) 2

+ x′ = 1 (16)

if we choose units:

(a) M = m

(b) L = E
mg

(c) T =
√
E/(mg2)

Notice that these units are the sizes which enter this problem . . . and so then the problem has determined its
own “Natural” units. We might say that that the problem has been self-referenced. Everything in the problem is
compared to (and only to) something else in the problem. This is the way Physics should be. We take a setting and
find relationships within that setting alone. That this is always possible to achieve is not at all obvious to young
students . . . but in fact it is!

We may revert to the original arbitrary set of units any time we choose merely by reinserting the definitions:

x′ =
x

L
=

x
E
mg

t′ =
t

T
=

t√
E/(mg2)

Generally, one simply reinserts at the end of the problem, because there just isn’t any benefit in dragging along
constants through our algebra. Notice that in choosing a definite set of units our equation is no longer passive!
The hidden partners are gone! We say that our equation is now Active. Notice also that our equation (apparently!)
no longer obeys dimensional homogeneity. Actually it does because it no longer has any dimension at all. It is fully
dimensionless. All equations that are to be evaluated numerically (say on a computer) must be Active. Why?
Because computers only understand numbers and comparisons to hidden partners are not yet definite numbers.
What we have simply done is chosen units that are built out of our constants . . . and then tucked those units under
our variables where you don’t “see them”. You probably didn’t suspect that this was always possible - but it always is.
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B. Physicists Tricky “Short-Cut” to the Same Result.

What we have just discussed might be called the “Engineer’s Work-a-Day Method”. It’s fool-proof and works
every time. Physicists, however, like insightful “short cuts” . . . and they have several. An equivalent method (but
which young students experience as “cheating”) is simply to go back to Step 1) and identify the constants and then

immediately use Rule 4.2) . We need only realize that we may choose our new units {L, T, M} so that the numerical
values of our base constants go to the number “1” in these units. That is we choose natural units such that:

(a) m = 1 · M Still in Passive Form !
(b) g = 1 · L

T 2 Still in Passive Form !

(c) E = 1 · M
(
L
T

) 2
Still in Passive Form !

If you look closely you will discern that this is precisely what we achieved in Step 6) above. Now you would proceed

to “back solve” just as you did before to discover {L, T, M}. When you inset these into the equation you can either
divide by the dimension of the equation (as before) or pull the “trickiest trick” yet by simply declaring that your
hidden partners are these quantities too . . . in which case we have, finally: L = 1 , T = 1, M = 1 . Then you get:

(a) m = 1 Now in Active Form !
(b) g = 1 Now in Active Form !
(c) E = 1 Now in Active Form !

In any of these methods you end up with the very same “active equation” as before with no constants appearing
and which is ready for numerical evaluation. This will be one of your basic tools throughout your entire scientific life.

V. UNITS COHERENT WITH A FUNDAMENTAL EQUATION

We have said that theories relate numbers obtained from measuring various physical quantities - and that the
fundamental equation defining the relationship invariably introduces a constant of proportionality. At this stage of
the discussion we must bemoan that perverse historical custom sometimes violates this otherwise rational state of
affairs. It is particularly grievous when this occurs in our most fundamental and beloved equations. Let me say
here that Newton did it right! It was his successors that messed it up. As an example I use the fundamental law of
mechanics. Newton realized that: force, mass, length, and time could all be independently measured.

In his fundamental treatise Newton stated (in principle):

~F ∝ dm~v

d t

namely: your measurements of force (in whatever units) will be found proportional to the time rate of change of
momentum (in whatever units).

As an equality we may write, of course:

~F = k
dm~v

d t

. . . where k is the constant of proportionality which arises naturally. It depends on the absolute sizes of all the
various units employed, as always.
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At this point in our discussion, two historical currents collide. The French revolution provided the impetus to
standardize everything. In particular the meter, the kilogram, and then finally the second were well defined (the old
standard meter and kilogram still remain in Paris). To adopt a unit of force the suggestion was now made - ‘why not
choose a unit of force such that the constant of proportionality comes out with the simplest numerical value possible
. . . the numerical value ‘1’. This was done - and the resulting unit of force was called the Newton (what else?) - and
there upon the ancient wisdom was forgotten that in some other set of units the constant of proportionality might
not remain ‘1’. Since the continental French set the tone for science well into the modern era we have been stuck with

the equation ~F = 1 dm~v
d t ever since.

Consequences

Suppose we take as our assumed working equation ~F = dm~v
d t (which is true if you measure: length in meters, time

in seconds, mass in kilograms, and force in Newtons).
Now examine what we arrive at if we change to units [UL], [UT ], [UM ], and [UF ]. Proceeding as before, we may

write:

~F ′
[

UF

Newton

]
=

dm′~v′

d t′

[
UM

Kilogram

] 1 [
UL

Meter

] 1 [
UT

second

]−2
Now collect conversion factors all together, yielding:

~F ′ =
dm′~v′

d t′

[
UF

Newton

]−1 [
UM

Kilogram

] 1 [
UL

Meter

] 1 [
UT

second

]−2
Now, for an arbitrary choice of new units, this product of conversion factors will not equal ‘1’. From a philosophical

point of view, this is only natural - yet, by historical president we have somehow become invested in this basic equation
having nothing but a ‘1’ standing there (yes, it’s idiotic but that’s the way it is). We now have no choice. Tradition
dictates that if three of the units are chosen at will - the fourth (usually the force unit) must be chosen so that the
above product equals ‘1’.

This constraint may be written as the simple requirement:

1 =

[
UF

Newton

]−1 [
UM

Kilogram

] 1 [
UL

Meter

] 1 [
UT

second

]−2
On rearrangement it assumes a more familiar form however:

[
Newton

UF

]
=

[
Kilogram

UM

] 1 [
Meter

UL

] 1 [
second

UT

]−2
The shorthand version of this is the old rule:

Newton = Kilogram 1 Meter 1 second−2

The point is this: If we choose to preserve the constant of proportionality at the value of unity (as convention
demands) then the choice of the fourth unit is not free. We may only choose among those special sets of units [UF ],
[UL], [UT ], [UM ] such that:

[
Newton

UF

]
=

[
Kilogram

UM

] 1 [
Meter

UL

] 1 [
second

UT

]−2
All selections of the four units which do obey this relation are said to be coherent with the fundamental starting

equation. The M.K.S.N. set of units is one such selection, and there are an infinity of others.
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VI. SUMMARY OF WORKING RESULTS

In this summary we collect a set of final useful results that scientists generally carry around in their heads.

1. Active and Passive
Passive Expressions: By the word “Passive” we denote that the quantity at hand is being expressed without a final
choice of units. The way we do this is by introducing “as yet unchosen unit comparison amounts” {[UL] , [UT ] , [UM ]}
(against which we measure things) and unit symbols ! Unit symbols actually carry two kinds of information: 1) they
tell you what unit was last used, and 2) by their position they indicate the place (and number) of the conversion
factors you will need should you choose to change to new units. Passive equations have dimension-full constants
and the equations themselves exhibit “Dimensional Homogeneity” (the old matching units trick). Every well defined
physical problem contains - within its definitions - a complete (or over-complete!) set of “Natural Units”. It is always
possible to arrange the equation such that the variables are scaled by (i.e. in ratio with) a natural unit. One key
outcome, then, is that when we “do algebra” with the symbols of a passively expressed equation to obtain an answer
...then the argument of any function in that answer must also be dimensionless.

Active Expressions: By the word “Active” we denote quantities that have been measured out in some definite
unit system. The quantities involved, then, are pure numbers and may be entered into a computing machine. Unit
symbols “should be gone” because if we have chosen our final units . . . all existing “conversion factors” have been
used up. Of course, by sloppy habitual usage many a person “hangs onto” unit symbols until the last moment. Then,
at that last instant, before entering numbers into a machine, . . . they “throw them away” - or so they think! Actually
- they don’t throw them away! They actually turn them into the number “1” which is our statement that the units
we wish to end up in are the units we are already in! At that moment the “hidden partners” are actually chosen to
be the units we are now in . . . and the unit symbols, accordingly, take on the value unity . . . and vanish from view.
Actively expressed equations DO NOT apparently obey “Dimensional Homogeneity” any longer . . . except that
they really do . . . because everything in them is now dimensionless (. . . please view equation (16) ).

2. Unit Conversion

Active Form: (new#) = (old#)
[

Old Unit
New Unit

]
Which is Rule 0).

Passive Form: (new#)
[
New Unit

Unext

]
= (old#)

[
Old Unit
Unext

]
Which is Rule 4.2).

Unit symbols disappear in two ways: 1) when we choose the ultimate “hidden partner” (the heretofore as-yet-
unchosen-unit) to finally (!) be something definite, or 2) we take the ratio of two unit symbols and the “hidden
partner” units disappear by ratio-cancelation. An example might be meter

cm = 100. Or, again,

150 cm = 150 cm
meter meter = 150 (.01)meter = 1.5 meter

3. Natural Units
The “Algebraic Structure” of our defining equations defines what we will call the set of Shape Relations in our
problem. The constants define the Size Relations. (As a clear example of this, reflect on all the properties of a
circle that don’t depend on it’s size . . . which is most of them! In choosing “Natural Units” it will be like studying the
“unit circle”). Buried within every problem are enough constants (often more than enough !) to provide Natural
Units for every quantity. When we do this: 1) the constants “disappear from view”, 2) the “shape properties” of our
problem are far more easily seen, 3) the numerical values which we find ourselves using will be “near unity” in size
and thus “Well Conditioned” (i.e. ideal for machine evaluation).

a) In the simplest Mechanics Problems we have only three base dimensions whose units we may freely
choose: {length, time, mass }. Accordingly, we may take (at most) any three of our constants and specify that
they take on the value of “1” in our new {L, T, M } system of “Natural Units” which we have now defined by that act.

b) Once we have chosen Natural Units and divided out the equation’s dimension, our equations will be fully
dimensionless and will no longer exhibit “apparent” dimensional homogeneity.

c) All functions representing the solution to any Physical Problem must have DIMENSIONLESS arguments.

LJB Chico, CA


