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I. SOLID ANGLE AND AVERAGING OF HARMONIC FUNCTIONS

A. Solid angle: A simple generalization of the angle concept

1. Planar angle

In its essence, the concept of angle is the notion of measuring the portion of a circle one has encompassed in
traversing a distance s around its circumference.

The most natural number to associate with the portion of a circle we have swept out on marching a distance s
about its circumference would seem to be the “Greek” (philosophically simple . . . ) choice:

s

circumference

This is commonly used today in the concept e.g. of “frequency”, as in “the number of revolutions per time”. With
this designation of the measure of angle, one complete circle is then represented by unity.

More common in scientific discussions is to use the number:

2π

(

s

circumference

)

=
s

R

which we call the radian measure associated with the angle and is actually the physical distance traversed along
the arc if our circle is a unit circle. This means we would now represent one complete circle by the number 2π . A
third common choice is the Babylonian ‘astrological’ choice or “degree measure” which arbitrarily divides the circle
into 360 parts and which the ancients chose because 360 is roughly the number of days in a year. This number is
then:

360

(

s

circumference

)

2. Solid angle

The concept of solid angle lies in the motion of measuring the portion of a sphere one has encompassed with a given
area A on the sphere’s surface. The most natural measure would, again, surely seem to be . . .
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(Given Area)/(Total Surface Area).

More common, however, is to use the number which is the exact analog of radian measure, i.e.

4π

(

Given Area

Total Surface Area

)

=
4πA

4πR2
=

A

R2
(1)

where the equation (1) is defined as the steradian measure. The universal symbol for solid angle is the Greek capital
Ω. Notice, if you have a unit sphere then any specified surface area on it is numerically equal to the solid angle
“subtended”. One useful (but surely not unique) visualization of solid angle is the size of the ‘cone’ needed to
encompass the given area.

Observe,as well, that solid angle (like planar angle) is dimensionless. If we were to stand at the sphere’s very center,
then a solid angle measures the portion of the total ‘sky’ intercepted or “blocked out”. Notice especially, in spherical
coordinates that the volume element

dV = r2dr sin(θ) dθ dφ

can be seen to be dV = r2dr · (infinitesimal area on a unit sphere), so in these coordinates, indeed,

dV = r2dr dΩ

where

dΩ = sin(θ) dθ dφ

The great utility of the notion of ‘solid angle’ is that it helps us to talk about the concept of direction in a coordinate
free way — and to write down physical integrals over direction. Imagine dividing the surface of a unit sphere into
very many infinitesimal patches. Then, if we take our origin at the center, all possible directions can be identified by
selecting out some specific patch (i.e. we have discretized “direction”). We say, in fact, that there are ‘ 4π possible
directions,’ meaning that the sum total of the patches is 4π. Each patch identifies an infinitesimal cone of directions
— this is ideally suited to integral calculus, which after all, sums up little portions of things. One often sees the
notation dΩ n̂ or dΩ (n̂) signifying a small cone of directions centered about the direction n̂. For example, if we are
faced with a surface integral over a sphere, it is helpful to recognize that dσ = R2dΩ where, on a sphere the radius R
is constant: e.g.

∮

d (Area) =

∫

all dir

R2dΩ = R2

∫

dΩ = R24π

B. Averaging property for solutions of Laplace’s equations

Preliminaries : Suppose we let %r = %ro + Rn̂ where %ro is a fixed vector. Then, for a given value of R, if we allow n̂
to point in all possible directions, we observe that %r traces out the surface of a sphere of radius R and center %ro. For
a given function φ we have φ(%r) = φ(%ro + Rn̂), then by the multi-variable chain rule we observe that

d

dR
φ(%ro + R n̂) = n̂ · %∇φ(%r)
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Next, consider a spherical volume of space V of radius R centered on %ro, and suppose that a function φ has the
property that ∇2 φ = 0 throughout this volume, i.e. it obeys the Laplace equation. Then, its integral is certainly
also zero . . . i.e.

0 =

∫

V

dV ∇
2φ =

∫

V

dV %∇ · %∇φ =

∮

Γ

%∇φ · n̂dσ

We denote the surface of the volume by the symbol Γ and we have transformed the volume integral into a surface
integral using the divergence theorem.. Suppose next we examine the special case where this surface Γ is the boundary
of a sphere of radius R centered at %ro. On the sphere’s surface each position is given by

%r = %ro + R n̂

with n̂ pointing in turn to each location on the surface. But since, as we just showed . . .

n̂ · %∇φ(%r) =
d

dR
φ(%ro + R n̂)

then

0 =

∮

Γ

dσ
d

dR
φ(%ro + R n̂) =

∫

dir

R2dΩn̂

d

dR
φ(%ro + R n̂)

where we have used dσ = R2dΩ as long as we are on a sphere. Since R isn’t a variable quantity in the integral we
may pull the derivative outside the integration, finally yielding:

0 = R2
d

dR

∫

dir

dΩn̂φ(%ro + R n̂) =⇒

∫

dir

dΩn̂φ(%ro + R n̂) = const.

We are allowed to conclude that this integral is a constant which does not depend on R . . . and so we may as well
set R = 0 !

∫

dΩn̂φ(%ro + Rn̂) =

∫

dΩn̂φ(%ro) = 4πφ(%ro)

which implies, in summary then . . .
∮

Γ

dσφ(%r) = R2

∫

dΩn̂φ(%ro + Rn̂) = 4πR2φ(%ro)

which we see implies:

1

4πR2

∮

dσφ(%r) = φ(%ro)

The conclusion is, then, if a function obeys the Laplace equation in a region of space it must also obey this amazing
averaging property. Average the function over a spherical surface and you end up with the value of the function at
its center!


