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Introduction to Vector Spaces

I. INTRODUCTION

Modern mathematics often constructs logical systems by merely proposing a set of elements that obey a specific set
of rules. The elements needn’t have any meaning whatsoever or any other reference (e.g. to the “physical world”). As
we study “Geometric Vector Spaces” we are actually using one such system. Although we do, indeed, intend to model
the three-dimensional “Physical Space” space we actually live in, the underlying structure can also be applied to a wide
variety of other physical systems. The point of doing this is that we are made aware of precisely which suppositions
(axioms) are responsible for which specific outcomes. As we add more structure, we narrow the applicability of our
resultant system. It becomes ever more specific. In our development here we shall start with the very most elementary
level of structure and then add on step by step.

II. LINEAR SPACES

1.) Foundational Concepts

The lowest level of underlying structure will simply be called a “Linear Space” . We start by defining a set of
elements {α, β, γ...} that we will call “vectors” (here we set aside the Greek alphabet for them) and a set of “scalars”
that will be the real numbers at first and later may be chosen as the complex numbers. It’s crucial that we understand
that “vectors” are not “numbers” but that they interact with them. If α is a vector then 2α or xα is too. Further,
vectors are given an “addition” relationship among themselves that looks just like addition of “numbers” but isn’t.
So that e.g., if α and β are vectors then 2α+ 3β is also a vector. We assume the following set of simple rules:

• (A)

1. addition has “closure”: if α and β are vectors , then α+ β always is too.

2. addition is “commutative”: α+ β = β + α

3. addition is “associative”: α+ (β + γ) = (α+ β) + γ

4. addition has an “additive identity” designated “0” such that: α+ 0 = α for every vector

5. to every vector α there is an “additive inverse” designated −α so that α+ (−α) = 0

• (B)

1. multiplication by scalars is “associative”: x(yα) = (xy)α

2. 1α = α and 0α = 0 for every α .

• (C)

1. multiplication by scalars is “distributive” : (x+ y)α = xα+ yα ... and

2. x (α+ β) = xα+ xβ

The key ideas underlying linear spaces are the concepts of:

1. linearity

2. independence
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Two vectors α and β are said to be linearly independent if no scalars {x, y} can be found other than zero to make
the following statement true:

xα+ y β = 0 (1)

Indeed, any collection of vectors {αi i = 1, ..., n} will be said to be “linearly dependent” if we can find a set of scalars
{xi i = 1, ..., n} that are not all zero such that:

n∑
i=1

αi xi = 0 (2)

If, on the other hand, the statement
∑n

i=1 αi xi = 0 does imply that all the scalars {xi i = 1, ..., n} must be zero,
then we say that the set elements {αi i = 1, ..., n} are linearly independent.

If the number of linearly independent vectors in any collection can be as large as some specific integer “n” but never
larger, we say that the vector space is of “dimension n” (or in the language of physics we say that the system has n
“degrees of freedom”) . Now suppose that we have such a system of n linearly independent vectors {αi i = 1, ..., n},
then any further vector αn+1 can certainly be expressed as a sum over our set:

αn+1 =
n∑

i=1

αi xi (3)

We say that the linearly independent set members {αi i = 1, ..., n} form a basis.

2.) Inner Product, Magnitude and Projection

The concepts of “magnitude” and “projection” will require adding yet more structure. We introduce the idea of
defining a mapping from any ordered pair of vectors α, β to the scalars. This will be our “inner product” and be
designated (α, β). It shall have the following properties:

1. (α, β) = (β, α) for real scalars or (α, β) = (β, α)∗ for complex scalars.

2. linearity: (α, x1β1 + x2β2) = x1(α, β1) + x2(α, β2)

3. positive definiteness: (α, α) ≥ 0 and (α, α) = 0 iff α = 0

Property 3. allows us to define a “magnitude” for any vector. We designate the magnitude of α by ‖ α ‖ and let it
be defined by:

‖ α ‖ ≡
√

(α, α) (4)

And now using this, for any vector α, we can define a “unit vector” α̂ by α̂ ≡ α / ‖ α ‖ , so that (α̂, α̂) = 1.
We say that the vector α̂ is “ normalized”. As we will discover, the inner product of any vector β with any other
“normalized” vector e.g. α̂ yields the special scalar (α̂, β) that takes on the meaning of “projection” of β along α̂ .
This will be a key idea in the expression of any vector as a linear combination of normalized “basis” vectors.

3.) Orthonormal Bases

Suppose that the linearly independent set of n vectors {α1, ..., αn} forms a basis of the set under consideration.
It is not at all necessary that we find (αi, αj) = 0 for i 6= j . However, we now show that from the original set
{α1, ..., αn} we may now construct a new set {ê1, ..., ên} that has the orthonormality property (êi, êj) = 0 wherever
i 6= j and (êi, êi) = 1 for i = 1, ..., n .

Step 1. Set ê1 ≡ α̂1

Step 2. Let η2 ≡ α2 − ê1(ê1, α2) Observe that, by construction, we now have (ê1, η2) = 0
Step 3. Now normalize η2 and use it to define the next new basis vector by setting ê2 ≡ η2/ ‖ η2 ‖
Step 4. In like manner now let η3 ≡ α3 − ê1(ê1, α3)− ê2(ê2, α3) and finally set ê3 ≡ η3/ ‖ η3 ‖ ... etc.
Step 5. Continue in this manner for each set member αi until we exhaust the set.
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In this way we construct a new set of n linearly independent vectors {êi} where any two vectors obey (êi, êj) = δi j

and the symbol δi j is a shorthand way of writing “1” if i = j and “0” if i 6= j . Since we will be taking inner
products very often and the inner products between basis vectors will show up ubiquitously, this compact notation
(the “Kronecker delta”) will simplify our algebra enormously. This set {êi} is our new orthonormal basis. With it we
can express any vector as α =

∑n
i=1 êi xi where xi = (êi, α). That is, for any vector α we have:

α =
n∑

i=1

êi (êi, α) (5)

As a free bonus consequence, we can easily observe that we have accidentally proven one more important and useful
result. Since from any two vectors α, β we can form α̂ ≡ α / ‖ α ‖ and η ≡ β − α̂(α̂, β) and since for any vector
whatsoever ( and therefore in particular for our vector η) we must have (η, η) ≥ 0, it follows:

(η, η) = (β − α̂(α̂, β), β − α̂(α̂, β)) = (β, β)− (β, α̂) (α̂, β) ≥ 0 (6)

In detail, this last inequality can be written:

(β, β)− (β, α)
‖ α ‖

(α, β)
‖ α ‖

≥ 0 (7)

Finally, with a simple rearrangement, we find:

‖ α ‖‖ β ‖ ≥ |(α, β)| (8)

This is the famous Schwartz inequality and we will use it rearranged in many forms such as |(α̂, β̂)| ≤ 1 .

III. 3-D GEOMETRIC VECTOR SPACES

In attempting to model the 3-D world we live in, J. Willard Gibbs constructed a three dimensional linear space with
an inner product and one additional feature viz. a vector product (also known as a “cross product” or even sometimes
as an “outer product”). He visualized the abstract elements of this space as representing displacements through
space rather than the Cartesian starting concept of points “in” space and found thereby that he could recover all of
Euclidean Geometry. To indicate that we have given our vectors “spatial meaning” we commonly now distinguish
vectors by a superior arrow e.g. ~A . Our three degrees of freedom in the linear space represent the three possible
spatial directions that physical space seems to make available to us. We emphasize that a Linear Space, in general,
need have no inner product nor any magnitude concept whatsoever much less a “cross product” too . These are “extra
levels of structure” that we add in to our model. Gibbs found that the dot product provided a succinct and accurate
rendition of the concept of “projection” (or “overlap”) of one displacement on another and, in like manner, that the
cross product precisely renders the concept of oriented areas as well as the concepts associated with rotations. The
combination of the two products in the “vector triple product” yields the representation, accordingly, of “oriented
volume” and a full completion of the Euclidean program of Geometry.

A. The Dot-Product

Consider first, then, the inner product (henceforth referred to as a “dot product”) which, we again assert, can
concisely represent physical projection of one displacement on another. As a first consequence, the dot product of two
normalized vectors will now represent the cosine of the angle between them. Dot products are now conventionally to
be written as ~A · ~B and all the time honored Cartesian formulae are then, in fact, generated by simply first defining
our products among an orthonormal basis. If we let the set {ê1, ê2, ê3} represent the three axis directions of a
right-handed coordinate basis where êi · êj = δi j then, for example, our dot product becomes:
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~A =
3∑

i=1

êi êi · ~A =
3∑

i=1

êiA i (9)

~B =
3∑

j=1

êj êj · ~B =
3∑

j=1

êj B j and therefore...

~A · ~B =

(
3∑

i=1

êiA i

)
·

 3∑
j=1

êj B j

 =
3∑

i=1

3∑
j=1

A iB j êi · êj =
3∑

i=1

A iB i

In this last result we have used the useful notational result
∑3

j=1 δi j B j = B i .
Notice especially that, if we make the identification of the projection of one unit vector on another with the cosine

of the angle between them ( i.e. the “included angle: θincluded ”) and if we write e.g. ~A =‖ ~A ‖ Â , then we have the
following very useful set of equalities:

~A · ~B =
3∑

i=1

A iB i = ‖ ~A ‖‖ ~B ‖ Â · B̂ = ‖ ~A ‖‖ ~B ‖ cos(θincluded) . (10)

These expressions link our initial “abstract” expression to the conventional Cartesian “component” expression and
finally to the “polar” or “absolute” expression. Such developments will be typical from now on and we will use
whatever form seems most convenient in the discussion at hand. Notice that certain results immediately become
clear, e.g. that ~A and ~B are perpendicular if and only if ~A · ~B = 0 .

B. The Cross-Product

Our final development here is the vector “cross product”. The key geometric match-up to be made stems from the
observation that any ordered pair of vectors defines an oriented area. The vectors actually define a parallelogram and
the information in their ordering (given by the so-called “Right-Hand-Rule” ) allows us to assign one side as “special”
or “positive” (or “up”). In the figure we see vectors ~v and ~w and their resultant parallelogram with the attendant
normal direction n̂ .

FIG. 1: The geometry of the cross-product.

Our abstract specification amounts to:

~A× ~B = (parallelogram area)n̂ = ‖ ~A ‖‖ ~B ‖ sin(θincluded) n̂ . (11)
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The fact that any area can be oriented by a normal vector which has three components allows us to express the
fact that areas “project ” just like displacement vectors. This may seem surprising at first (and is, in fact, due to
the three-fold dimensionality of physical space), but soon appears natural when one recognizes that there are exactly
three coordinate planes (x-y, y-z, z-x) and that the projection of one area onto another is exactly proportional to
the cosine of the angle between the planes (the “dihedral angle” θ) and that this angle is just the same as the angle
between the two unit-normal directions (you may think of them as “opening up” together).

FIG. 2: The dihedral angle between planes equals the angle between their normals.

Once again, our newly defined product may be given variously in the: “Abstract”, “Cartesian Component”, or
“Absolute Polar” specifications that are all perfectly equivalent. We state the definitions in abstract form first and
follow them with the Cartesian development. The “Cross Product” ~A× ~B of two vectors is specified by the following
rules:

1. ~A× ~B is itself a vector and is linear in each vector of the product (we say it is bilinear) .

2. ~A× ~B is perpendicular to both ~A and ~B, so that e.g. ~A · ( ~A× ~B) ≡ 0

3. ~A× ~B = − ~B × ~A so that ~A , ~B, and ~A× ~B form a right-handed triple of vectors.

4. ‖ ~A× ~B ‖= ‖ ~A ‖‖ ~B ‖ sin(θincluded)

The Cartesian decomposition is facilitated by first stating the results for the three planes defined by the coordinate
axes. Any two axes, then, define a plane and there are only three combinations: {ê1, ê2}, {ê2, ê3}, {ê3, ê1} . We write
out our fundamental specifications in “Abstract” form first:

ê1 × ê2 = 1 ê3 (12)
ê2 × ê3 = 1 ê1
ê3 × ê1 = 1 ê2

Now we proceed very much as we did with our dot product in equation (9) viz. :

~A =
3∑

j=1

êj êj · ~A =
3∑

j=1

êj A j (13)

~B =
3∑

k=1

êk êk · ~B =
3∑

k=1

êk B k and therefore...

~A× ~B =

 3∑
j=1

êj A i

 × ( 3∑
k=1

êk B k

)
=

3∑
j=1

3∑
k=1

A jB k êj × êk =
3∑

j,k=1

A jB k êj × êk
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Since the Cartesian approach is committed to expressing all vector expressions in their component forms, we
complete the derivation by finding a typical component of ~A × ~B. We recall that, in all cases, the ith component of
any vector ~V is found by computing the projection of that vector along the ith coordinate direction by means of the
dot product. That is, Vi = êi · ~V . It then follows that:

( ~A× ~B)i = êi · ( ~A× ~B) = êi ·
3∑

j,k=1

A jB k êj × êk =
3∑

j,k=1

A jB k êi · (êj × êk) (14)

Notice especially that with two separate indices each sweeping through three values, that there are nine terms in
this double sum ... yet all but two of them turn out to be zero! This is because of the curious vector triple product
term êi · (êj × êk) in the argument. You can easily convince yourself that to be anything but zero, the indices {i, j, k}
must represent the numbers {1, 2, 3} in some order. That is, if any two of the indices represent the same number,
then the triple product comes out to be zero. Finally, if {i, j, k} represent {1, 2, 3} in anycyclic (sequential) order i.e.
1 → 2 → 3 → 1 ... etc. , then the value is 1 and in any anti -cyclic order it comes out -1. Because we will be doing so
many component calculations we conventionally use the concise notation εijk ≡ êi · (êj× êk). This symbol (frequently
called the Levi-Civita totally antisymmetric tensor) embodies the component expression of the cross product, and we
simply remember:

( ~A× ~B)i =
3∑

j,k=1

εijkA jB k (15)

We summarize the properties of this odd but extremely useful device in the following list:

1. εijk = −εjik i.e. the value changes by a minus sign under interchange of any two of its indices.

2. εijk = εjki = εkij i.e. the value is unchanged under any cyclic rotation of all the indices.

3.
∑3

k=1 εijk εkst =
∑3

k=1 εkij εkst =
∑3

k=1 êk · (êi × êj) êk · (ês × êt) = (êi × êj) · (ês × êt) = δisδjt − δitδjs

This third property may take some staring but actually follows straight forwardly enough upon consideration of
what a complete set of orthonormal unit vectors is like. We will need this result to evaluate expressions involving two
cross products. Next we list the same properties but as they appear in abstract notation:

1. ~A× ~B = − ~B × ~A

2. ~A · ~B × ~C = ~B · ~C × ~A = ~C · ~A× ~B and one often relates the first and last as ~A · ~B × ~C = ~A× ~B · ~C

3. ~A× ( ~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B) and also ( ~A× ~B)× ~C = ~B( ~A · ~C) − ~A( ~B · ~C)

Finally, we may combine these results in many and various utilitarian forms, of which a few are listed below:

1. ( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D) − ( ~A · ~D)( ~B · ~C) ... so, in particular ...

2. ( ~A× ~B) · ( ~A× ~B) = ( ~A · ~A)( ~B · ~B) − ( ~A · ~B)( ~B · ~A) = ‖ ~A ‖2 ‖ ~B ‖2 (1 − cos2(θincluded)) ... so ...

3. ‖ ~A× ~B ‖= ‖ ~A ‖‖ ~B ‖ sin(θincluded)


