CSUC Spring Term 2020 Physics 204A Portfolio Problem for Week 13:

 Due Monday, April 27 by Noon on our class Blackboard site: 202-PHYS204A-05-4569Dear Class: This is the fifth (and Week13) Portfolio Problem Set. The first is a rotation problem mixed with a simple 1-D translation problem. Both emphasize universal equations of motion.
Draw lots of pictures! Don't rush! The answer is fun - and you will have learned a ton about problem solving ... and bowling! This is an open book and unlimited time exercise.

Let's Go Bowling !

A bowler throws a bowling ball of radius $\mathrm{R}=11 \mathrm{~cm}$ down a bowling lane. It has an initial linear velocity of $\mathbf{v}_{\mathbf{o}}=8.5 \mathrm{~m} / \mathrm{s}$, but no initial angular velocity. The kinetic frictional force $f_{\mathbf{k}}$ causes both a linear deceleration and an angular acceleration. The kinetic frictional coefficient between the ball and the floor is $\mu_{\mathrm{k}}=.1$. When the ball's linear speed has decreased enough and the ball's angular velocity has increased enough, there will come a moment when the ball's contact point with the floor is no longer skidding on the floor! At that critical moment the frictional force vanishes! After this critical moment the velocities $\mathbf{v}_{\text {crit }}$ and $\omega_{\text {crit }}$ are constant.
a) How long does the ball slide?
b) How far does the ball slide?
c) What is the linear speed when smooth rolling begins?
d) Make a careful graph of \mathbf{v} and $\mathrm{R} \omega$ versus time from the beginning until the ball is no longer skidding. Since these quantities have the same dimension you may plot them on the same graph.

ROLLING a Spool on the Floor (a "YoYo" problem)

A spool of string of inner radius $\mathrm{R}_{1}=3 \mathrm{~cm}$, outer radius $\mathrm{R}_{2}=5 \mathrm{~cm}$, and mass $\mathrm{M}=.2 \mathrm{~kg}$ is unwound under a constant horizontal force $\mathrm{F}=1.4 \mathrm{~N}$ applied to the unwinding thread as shown. Assuming that the spool rolls without slipping on the floor and its center accelerates at $\mathbf{a}=8 \mathrm{~m} / \mathrm{s}^{2}-$ we wish to learn about the other features of the system. [Warning: this is not some simple disk or any other simple object! We don't know the Moment of Inertia! You must work backwards from the universal equations of motion ...]
Please compute from the equations of motion and the given numbers:
(a) what the frictional force from the floor in direction and magnitude must be?
(b) what its center of mass moment of inertia must be?
(c) what its moment of inertia about the point of rolling contact must be ?

