CSUC Spring Term 2020 Physics 204A Portfolio Problem for Week 9: Due Monday, March 30 by Noon on our class Blackboard site: 202-PHYS204A-05-4569

Dear Class: This is the second midterm you would have taken! It is also, now, your first (and Week9) Portfolio Problem. This is an open book and unlimited time exercise - but now I'm looking for thorough understanding and creative solutions! Completeness and depth count!

1) a) State Newton's laws clearly (in words and/or symbols) and in order.
b) A 2 kg mass moves in the $\mathrm{x}-\mathrm{y}$ plane with a velocity vector given by $\mathbf{v}=\left(\mathrm{a}-\mathrm{bt} \mathrm{t}^{2}, \mathrm{ct}\right) . \quad\left\{\mathrm{a}, \mathrm{b}, \mathrm{c}\right.$ are constants where $\left.\mathrm{a}=2.4 \mathrm{~m} / \mathrm{s}, \mathrm{b}=1.6 \mathrm{~m} / \mathrm{s}^{3}, \mathrm{c}=4 \mathrm{~m} / \mathrm{s}^{2}\right\}$ What must be the force on the mass at $t=2$ seconds ?
2) A wedge of mass m_{2} is pushed along the floor by a horizontal force F while a mass m_{1} sits on its sloping face but slips neither up nor down. If all surfaces are frictionless, what must F be ?
a) draw a complete free body diagram for the upper block m_{1}.
b) draw a complete free body diagram for the wedge m_{2}.
c) find the acceleration of the blocks.
d) find the force F.
3) A 50 kg steel file-cabinet is in the back of a dump truck. There is a coefficient of static friction $\mu_{\mathrm{s}}=0.8$ and a coefficient of kinetic friction $\mu_{\mathrm{k}}=0.6$ between the cabinet and the truck bed. The truck bed is now tilted to 20° and the cabinet hasn't slipped yet.
a) Draw a free body diagram for the cabinet.
b) What is the frictional force at this angle?
c) At what angle does the cabinet finally slip?
d) Once the cabinet finally slips, ... what will be its acceleration?
4) A conical pendulum is formed by attaching a mass $\boldsymbol{m}=1.5 \mathrm{~kg}$ to a string of length $\boldsymbol{L}=3 \mathrm{~m}$ and then allowing the mass to move in a horizontal circle of radius $\boldsymbol{r}=.4 \mathrm{~m}$ as shown below.
a) What is the tension in the string?
b) What is the ball's angular speed?
c) What would be the minimum (nonzero!) angular speed possible if we were now to change the radius of circular motion and allow the radius r to become smaller but remain non-zero ?
5) Two blocks are connected by an ideal string that runs over an ideal frictionless pulley as shown below. The coefficient of kinetic friction between each pair of surfaces is $\mu_{\mathrm{k}}=0.25$.
a) Draw a free body diagram for each block.
b) Find the acceleration of the lower block.
c) Find the tension in the connecting string.
6)

3)

4)

