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Pre-Introduction to Vector Geometry

I. INTRODUCTION

We wish to study ordinary Geometry by using “Vector” techniques. Your first response may well be “ why ? ” ...
don’t I already know Cartesian geometry? The answer is, of course, “yes”, and in fact many of you already know
geometry not just one but two different ways: its Cartesian formulation and its Euclidean formulation. The vector
formulation that arrived about 1900 already represented a third-wave “Gibbsian” expression of something that had
been well studied for thousands of years. So, you may justifiably ask “what gives”? You will be even more dismayed
to learn that, even as we speak, a fourth-wave expression of geometry is being formulated and is well underway to
supplanting the other three! So are we (you may ask ...) proposing to learn something we already know and which,
in fact, is going out of date even before we start? The answer is a resounding yes! The reason is deep and abiding
and goes as follows. As we proceed through the mathematical sciences, one of the greatest lessons is the realization
that how we choose to organize our knowledge is of the greatest possible importance in our ability to reason about
it. We come to realize that the very same thing can be said and understood MANY WAYS. Some organizations
of knowledge reveal and expose assumptions and relationships that would never have occurred to us otherwise.
Likewise, some symbolic representations of knowledge allow vastly more efficient manipulation and reasoning. An
archetypal example of this is the comparison between the Roman Numeral representation of numbers and the Decimal
(Hindu/Arabic) representation (e.g. just try multiplying numbers using Roman Numerals ... it will drive you batty!).
We will experience the same sort of thing with the Vector formulation of geometry. Beyond this, Geometry in its
Vector formulation also serves most students as the pathway to yet more abstract mathematics. So you need to
learn it not just because it is extremely powerful (which it is ...and, frankly, many folks decide to go no further) but
because, later, should you go on, you will “deconstruct” it yet more and your mind will see the pathway forward
into really really powerful and ever more abstract formulations. The “ah hah!” moments will come crashing in
non-stop. This “Pre-Introduction” is intended as both motivational and as the tiniest preview of the kinds of things
we will encounter in our study of Vectors. Don’t worry that the details aren’t here yet ...that will happen soon enough!

It may seem strange to you that we have the freedom to simply “formulate” a new way of doing things. In the past
you probably imagined that mathematics was done or complete and it was your task simply to “learn it”. However,
modern mathematics often (actually, it’s pretty relentless ...) undertakes to look at old things new ways. The “game”
is to construct logical systems by merely proposing a set of elements that obey a smallish, cleverly chosen, specific set
of rules. The elements needn’t have any meaning whatsoever or any other reference (e.g. to the “physical world”). As
we study “Geometric Vector Spaces” we are actually using one such system. Although we do, indeed, intend to model
the three-dimensional “Physical-Space” we actually live in, the underlying structure can also, amazingly, be applied
to a wide variety of other physical systems. The point of doing this is that we are made, thereby, very much aware of
precisely which properties (axioms-propositions-postulates etc.) are responsible for which specific outcomes. We have
“penetrated” the inner meaning of things, so to speak, and we see what is really going on. Then, as we add more
structure, we narrow the applicability of our resultant system. It becomes ever more specific. In our development here
we shall start with the very most elementary level of structure and then add on step by step. For those of you who
appreciate the “deep messages for geometry” going on here, the moment of truth happened near the end of the 18th

century when, for the first time in human history, scholars realized that geometries other than Euclidean Geometry
were in fact possible. This was a terrible shock! Because, if there are multiple mutually-competing geometries “out
there”, then what we thought was the absolute TRUTH all along, really has the status of a model of the truth and
may be an incomplete or partial truth. The ancient Greeks truly believed that mathematical truth and physical truth
were inextricably the same thing! We now know better, but it hasn’t been easy or pleasant to digest this crowning
fact. We moderns, for example, have now internalized that Einstein showed us that the world seems actually to be
Riemannian (a yet more complicated geometry) and becomes Euclidean only when gravity is weak, as it apparently
is in our corner of the Universe. Yikes! What we are really doing, then, is building a good mathematical system that
may (or may not ...) be a good model of the physical world we live in. Mathematics is always logical truth, but it
need not be physical truth (ouch!). This is an essential realization the ancient Greeks never had.

Let us begin the journey.
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II. EARLIER FORMULATIONS

1.) Euclidean Geometry

Two and a half millennia ago, the Greeks formulated the first axiomatic presentation of geometry that we know
of. You know it as Euclidean Geometry. It was a monumental achievement and served the world as the absolute
prototype of logical thinking until almost the present day. Everyone who was anyone had to master it. It had a very
rigorously limited set of things to build from (nothing else is allowed) and a well defined set of rules of reasoning
you had to stick to. The things were given a set of properties that were stated in the famous 5 postulates. These
postulates were just that, i.e. they were statements to be accepted as true without challenge. Then you “go at it”
and see what else must follow logically from this starting place. Well, you can prove an awful lot and Euclid filled 13
books full with his proofs including the Pythagorean theorem and tons more. Over the following centuries any claim
to academic fame usually included proving yet more stuff. What is important to us is not the content of Euclidean
Geometry (all of which you pretty much know), but rather the manner in which it is done. First off, the things you
get to talk about are: points, line segments, lines, circles and angles. Note especially, that this is ALL you get to
draw! There are no coordinate axes and no units, no origin as a reference spot, and most surprisingly ... almost
no numbers!!! Nothing (but nothing!) is allowed on the page except the very things you are talking about. Also,
there is no Algebra since that hadn’t been invented yet. It comes as a real shock to most modern people that you
could prove anything at all! And yet, the Greeks learned far (far!) more about the geometry of the physical world
than most people on today’s sidewalks will ever know! So who’s laughing now? I would like to call their mode of
reasoning “Absolute”. Only Absolute objects are allowed in the discussion and only their Absolute properties can
be used in reasoning. The resultant discussion is exquisitely visual and the reasoning is astoundingly transparent
and concrete to all participants. So...what’s not to like? The answer for two thousand years was “nothing”! It was
only in the seventeenth century, with the development of algebra, that the power of symbolic numerical reasoning
was appreciated by a wider audience. The way was prepared for the second formulation. The intrigue here was the
“temptation” to turn Geometry “into” Algebra, and then to use the power of Algebra to easily prove things that are
really tough to show in the plain old Euclidean way.

I close here with an insider’s comment about an academic debate for the ages. For those of you who
like monumental dramas/slugfests that extend across the centuries and millennia, you can’t do better than the
struggle between viewing the world as being essentially Geometric (and thus spatial/visual, so to speak, i.e.
Euclidean/experiential/constructive/Pascal-like), on the one hand, or rather as Algebraic (and thus grammati-
cal/verbal, so to speak, i.e. Cartesian/rational/analytic/Descartes-like) on the other. Wowee...what a fight!

Who says Math and Physics aren’t cultural disciplines?...! We turn now to this second approach.

2.) Cartesian Geometry

Cartesian geometry was probably “the” way you learned geometry at all. You are most likely unaware that most of
humanity for most of history did it quite differently! In fact, Cartesian Geometry is the complete “flip-side” approach
to that of Euclidean Geometry. First off, it deals almost exclusively in ...yup... numbers! What is stranger yet (to
the Greeks that is), in order to get those numbers into the discussion we have to introduce a whole bunch of things
that aren’t even there. What are these? Well, there are those coordinate systems mainly. When you look out the
window on the world, you do NOT see coordinates axes painted on the ground (they are, in fact, complete fictions)!
Nor is there an origin and nobody has chosen units. You may be giving me a bewildered look just now and wish
to protest...“ but what’s the harm? ”. As we will soon discover, there are many serious failings and pitfalls here -
the harm is grievous. What was gained, of course, was the staggering power of algebra. So powerful was this that
the great shortcomings were pretty much overlooked for a couple hundred years. But that’s over now - and has been
for a century. The first (and lesser ... though still big) objection is that in turning geometry into algebra, we have
completely lost any “visual” connection to our discussion. The greater objection is that, in introducing things into
any discussion of physical law that aren’t really there, we end up with statements that are a hopelessly mixed up
tossed-salad of fact and fiction and we can’t easily discern which is which! We lose sight of just which structure (the
real or the fake one) gives rise to any specific outcome. We lose track of what is arbitrary and what is essential. The
words we will use are Absolute and Relative. Absolute things don’t depend in any way on the arbitrary elements in
our discussion, whereas Relative things “relate back” in some way to arbitrary things. Since geometric relationships
are not arbitrary in any way, we need to remove these relative things if we are to clearly recognize what is essential
and necessary. You may wish to visualize Cartesian axes and all other relative things as a sort of “scaffolding” that
we introduced to complete the argument, but then must be removed once the logical structure is complete. The
introduction of the Vector formulation of geometry was an enormous step in this modern direction, and we need to
do it (just as we also need to take pity on all those classical Greeks who are spinning in their graves...).
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The Cartesian formulation of Geometry starts with the concept of point location. You are all familiar with the
notion of a “coordinate triple” of numbers e.g. (5, 2,−3) which specifies a point-location in space. Of course, the
numbers involved would be meaningless without their reference back to established coordinate axes and an origin
(plus units of measurement). The problem here is that the choices of origin, axis orientation and units are all
completely arbitrary. But geometric relationships are not arbitrary ...ever. Somehow, in some mysterious way, all the
arbitrariness “cooks out” somewhere in the argument. Most likely, you were never made aware of just how and where
this was happening. The Vector formulation of Geometry takes acute note of this, however, and seeks to “build in”
these magical steps into the very starting structure of the formulation. These “magic” maneuvers did not come out of
thin air, by the way. They were well known to the founders of Cartesian Geometry and employed merely as “insiders’
tricks”, so to speak. What may surprise you is that there are just three of them and the totality of geometry may
be built out of them ... and only them (we can prove this!). Each of these three maneuvers/structures will receive
its own name, which are: 1) displacement, 2) dot product, 3) cross product. We will discuss these in great detail in
later sections, but let me just mention here the amazing simplicity of the actual founding ideas and where they come
from, so that later discussions don’t seem so arbitrary. Let us start with the observation that only differences of point
coordinates will ever actually show up in our discussion. Why is this? The deep answer is that, it has to be that
way because then the arbitrarily chosen origin of coordinates drops out of the problem! You may never have noticed
this. This idea of a difference is so important that we have a special symbolism for it, the “delta” notation e.g.:
∆x ≡ (x2 − x1). You are supposed to notice that if you move the origin of coordinates up or down the x axis, all x
coordinates are shifted by an equal amount that cancels on taking a difference. Differences of location are then seen
to be, in a deep way, more fundamental than location itself, and all physical laws will be expressed in terms of them.
What a surprise this is! We give the name displacement to a change of location and it will be the founding concept
in our building of the vector formulation of geometry. Indeed, the very word Vector comes from the Latin word for
“vehicle of transport”. A vector carries you from one location to another, so to speak. We will need three things to
be a “vector displacement”: a) amount of travel (7→ magnitude), b) axis of travel, and c) sense of travel up or down
the axis (7→ direction). People often summarize these by saying that a Vector has magnitude and direction. Next, we
will need to get rid of the (arbitrary) choice we made in setting up our axis directions. The (only!) way to do this is
to use what are known as the cosine and sine “double-angle formulas”, which we list next (and will prove simply later).

cos(θ − φ) = cos(θ) cos(φ) + sin(θ) sin(φ) (1)

sin(θ − φ) = sin(θ) cos(φ) − cos(θ) sin(φ) (2)

These relationships will do for angles what we just did for coordinates, namely they give us differences! By this
simple stratagem, then, we will eliminate our choice of axis directions. Only differences of location and angles
will have any significance and they will recreate for us the Greek idea of “Absolute Things” which won’t depend on
arbitrary choices. So, when we pick up our discussion of Vector Geometry, as we do next, be prepared to notice
the singular importance of displacements, dot-products, and cross-products. The real miracle is that ALL OF
GEOMETRY is contained in them.

III. BASIC VECTOR MANIPULATION: ...ADDITION AND SUBTRACTION

(This material is forthcoming and is currently represented in alternative notes)
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IV. THE DOT PRODUCT AND CROSS PRODUCT

1.) The Origin of the Dot and Cross Products

The “dot product” has its origin in a simple Cartesian construction. Consider the following 2-dimensional picture:

(cos(α), sin(α) )

( cos(β) , sin(β) )

  α

 β

β-α

r = 1

FIG. 1: The Setting for the Dot-product.

Here we see two vectors in a plane drawn from the origin out to the unit circle. Since the vectors start at the origin,
the coordinates of the tips of the vectors are also, then, the components of each of the vectors. So we may write:〈

x1, y1
〉

=
〈
cos(α) , sin(α)

〉
≡ r̂1〈

x2, y2
〉

=
〈
cos(β) , sin(β)

〉
≡ r̂2

You are supposed to notice that the two angles {α, β} refer back to the x̂ axis, and thus are relative to something
“artificial” (i.e. the orientation of the x̂ axis). However, if we compute the following simple combined product:

x1 x2 + y1 y2 = cos(α) cos(β) + sin(α) sin(β) = cos(β − α)

by the cosine double angle formula, the result depends only on the difference of the angles and that is independent
of the orientation of the x̂ axis. So! By this maneuver we have removed any dependence on how the axes are tilted.
You can immediately see that we can create a second and similar outcome by computing:

x1 y2 − y1 x2 = cos(α) sin(β) − sin(α) cos(β) = sin(β − α)

where, now we have invoked the sine double angle formula (we will use this second result in just a moment). We have,
now, merely to recognize that any vector can be written as its magnitude times its unit vector direction e.g.

~r = ‖ ~r ‖ r̂ = ‖ ~r ‖
〈
cos(α) , sin(α)

〉
=
〈
x, y
〉

and now we are prepared to write our dot product in its final form.

x1 x2 + y1 y2 = ‖ ~r1 ‖‖ ~r2 ‖ ( cos(α) cos(β) + sin(α) sin(β) ) = ‖ ~r1 ‖‖ ~r2 ‖ cos(β − α)

Actually, we usually do it “one better” by calling the angle β − α ≡ θincluded on the right hand side. In summary,
then, we will now exploit our understanding from above and simply define the dot product ~r1 · ~r2 of two vectors as:

~r1 · ~r2 ≡ x1 x2 + y1 y2 = ‖ ~r1 ‖‖ ~r2 ‖ cos(θincluded) (3)

Notice especially that the Cartesian components in the middle expression, i.e. {x1, x2, y1, y2} all do individually
depend on the orientation of the axes, but that the complete combination used gives an output which does not ! You
can use any axes you please and the outcome will always be the same. That’s why it’s common and mature practice
to simply write ~r1 · ~r2 and never mention the axes at all. Of course we do use axes all the time, but we are not
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bound to using any particular ones as long as we use the dot product “recipe”. The left hand side of this expression
uses only “whole-vectors” and might be called a “holistic” expression, though I will call it Absolute. In reality, it is a
“Greek-like” expression such as we have sought all along - nothing artificial! The right hand side is actually what I
would call “Polar” in form, and is also exclusively built out of Absolute entities...so it is also “Greek-like”.
Now, we mentioned (above) that we would later use the companion relation using the sine double angle formula and
I include it here in its final form so we can talk about it below. It will form the essential innards of what we will
eventually call the “cross-product”.

x1 y2 − y1 x2 = ‖ ~r1 ‖‖ ~r2 ‖ sin(θincluded) (4)

2.) What Do the Dot and Cross Products “Give Us” ?
We have just spent a lot of time developing things that are independent of axes etc. , i.e. that are Absolute. But

these things had better be useful to us or what we have just done will be Absolutely Stupid ! The deep insight is
that “Absolute” and “Useful” go hand in hand. For simplicity’s sake, let us keep our discussion, just for the moment,

in a 2-D plane. By definition, any vector has Magnitude and Direction. So for any two vectors ~A and ~B it doesn’t
take long before the natural question arises: “So ... just how much are they in the same direction and how much
are they not ?” The fancy words meaning “same direction” and “not same direction” are, of course, parallel and
perpendicular. Now in fact, if we look back at equations 3) and 4), we readily observe that they give us, as output,
precisely the product of parallel parts and the product of perpendicular parts ! This is spectacular... and will,
in short order, provide us with all the information we need to “do” geometry.

Let us now collect our results more systematically. Given any two vectors ~A and ~B, ask: “how much of ~B falls

along the direction of ~A ?” The answer is ‖ ~B ‖ cos(θincluded), and the vocabulary word we’ll use is Perpendicular
Projection or, more commonly, just Projection. The following picture displays pretty well just what we mean.

FIG. 2: The Idea of Projection.

If we now use the symbolism B‖ for the component of ~B along the direction of ~A , then:

B‖ = ~B · ~A/ ‖ ~A ‖ (5)

The unit vector in the direction of ~A is Â ≡ ~A/ ‖ ~A ‖, just as the unit vector in the direction of ~B is B̂ ≡ ~B / ‖ ~B ‖.

Using these nice notations we can write, succinctly:

B‖ = ( ~B · Â) = ‖ ~B ‖ cos(θincluded)

A‖ = ( ~A · B̂) = ‖ ~A ‖ cos(θincluded)

The next two figures bring these ideas all together. We can now display a set of equivalent results:

~A · ~B =‖ ~A ‖ B‖ = ‖ ~B ‖ A‖ = ‖ ~A ‖‖ ~B ‖ cos(θincluded) = AxBx +AyBy (6)
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FIG. 3: Projection as Given by the Dot-Product.

FIG. 4: Vectors projecting onto each other.

Further, since any vector lies entirely along itself, we can write:

~A · ~A =‖ ~A ‖2 = AxAx +AyAy = A2
x +A2

y = A2
‖ +A2

⊥ (7)

where parallel and perpendicular components can be referenced to any direction B̂ whatsoever.
The Cross product seems to give students more trouble than the Dot product and, to be sure, it leads to a rather

richer and more involved discussion. The first thing to remember though is that, if we stay in a plane, both of these
constructions are simply the sine and cosine double-angle formulas in new clothing. As we have just said, the dot
product carries the geometric meaning of “PROJECTION” (or product of parallel parts). We now assert that the
cross product will, in its turn, carry the important geometric concept of “AREA” (or product of perpendicular parts).
As we will soon come to see ... these two combinations exhaust the possibilities of interesting things to say and this
is why all of Geometry is contained in them. Between these two constructions, we can learn everything. Consider
the following picture which depicts two non-parallel vectors ~w and ~v. Notice, especially, that these vectors define a
natural parallelogram, and we can find its area with the 2-D version of the “cross-product”, as follows.

FIG. 5: Vectors defining a Parallelogram.

We have already developed the following relation and listed it in equation 4) above.

wx vy − wy vx = ‖ ~w ‖‖ ~v ‖ sin(θincluded) = base× height (8)

Here you can easily see that our combination has, indeed, produced precisely the area of the parallelogram.
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3.) 3-Dimensions ... Our Next Challenge

Physical Space is 3-Dimensional. We now need to generalize our previous results to the forms they will have in that

fully 3-D setting. For a single vector ~A how we do this is so straight-forward and well known to you as to scarcely
merit attention.

FIG. 6: Vector in 3-D Space

In the figure above we see a typical vector ~A ≡
〈
Ax, Ay, Az

〉
, where now three components are necessary to

specify the vector. This shocks and surprises no one. It also comes as a surprise to no one that the magnitude of the
vector is given by:

~A · ~A =‖ ~A ‖2 = A2
x +A2

y +A2
z = ‖ ~Ax̂−ŷ ‖2 +A2

z. (9)

We have made use of the notation ~Ax̂−ŷ ≡
〈
Ax, Ay, 0

〉
which is the “projection” of our 3 − D vector ~A onto the

x̂ − ŷ plane. What is a little surprising (though not shocking ...) is that we have only had to use our 2 −D results

(twice) to achieve a 3 −D result ! The first use was in using our knowledge of ‖ ~Ax̂−ŷ ‖ from 2 −D geometry, and

then drawing a second plane through ~Ax̂−ŷ and our new direction ẑ , which allowed us to use our 2−D result again.
But now, please take in the logical consequence of all this. The result given in equation 9) is ⇒ independent ⇐ of
the choice of axes and their orientations ! If you were to choose any three new (mutually perpendicular) axes, the
values of each of the numbers {Ax, Ay, Az} would change, but the value of the sum of their squares would NOT

! ~A · ~A = ‖ ~A ‖2 is still an Absolute quantity. Now comes the shock ... . Suppose we had a second generic vector
~B ≡

〈
Bx, By, Bz

〉
. We now get to assert that:

~A · ~B ≡ AxBx + Ay By + Az Bz = ‖ ~A ‖‖ ~B ‖ cos(θincluded) (10)

gives an Absolute quantity just as before, and indeed with precisely the same meaning! So WHY do we get to assert

this ? Well ... just consider. Since any vector dotted with itself is an Absolute quantity, that means ~A · ~A and ~B · ~B
are both Absolute. Yes, but then so is ( ~A+ ~B) · ( ~A+ ~B) . And now we can write:

( ~A+ ~B) · ( ~A+ ~B) = ~A · ~A + ~B · ~B + 2 ~A · ~B (11)

In fact, by moving all but the last term to the left hand side, we have:

( ~A+ ~B) · ( ~A+ ~B) − ~A · ~A − ~B · ~B = 2 ~A · ~B (12)

and since the left hand side is manifestly Absolute the right hand side must be too! And, further, since we could

always draw our axes so that ~A and ~B fall in the x̂− ŷ plane, the meaning can’t have changed either. This is power.
At this point we could start deriving zillions of useful results, but since these notes are intended to be principally

motivational, I won’t just yet ... except for two.
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First, since we now have, as a central conclusion independent of any coordinate axis frame, that:

~A · ~B = ‖ ~A ‖‖ ~B ‖ cos(θincluded)

we can conclude that two vectors are perpendicular ... if and only if their dot product is zero... because then
cos(θincluded) = 0 , and that implies θincluded must be 90◦.

Second, we recognize that the components of any vector ~A are really just projections onto the coordinate axes and
are thus, themselves, just dot products, e.g. :

Ax = ~A · x̂
Ay = ~A · ŷ
Az = ~A · ẑ

So now we may write a very attractive summary conclusion:

~A = Axx̂ + Ay ŷ + Az ẑ = ( ~A · x̂)x̂ + ( ~A · ŷ)ŷ + ( ~A · ẑ)ẑ (13)

Our final challenge is to extend the notion of Area to three dimensional space. This isn’t hard to visualize. We start

with the (previously mentioned) observation that any two non-parallel vectors, say ~A and ~B , determine a natural
Parallelogram in a natural plane. Only now, while still remaining flat, the plane can be oriented or tilted any which
way. The first realization we need is that the orientation of any plane is uniquely characterized by a single vector, its

normal or perpendicular, designated n̂ in the next picture. Since, by assumption, the vectors ~A and ~B are in the
plane, they must both be perpendicular to the normal.

FIG. 7: Two Vectors in 3-D Space

The second realization we need is ... that areas can project onto other areas just as vectors can project onto other
vectors.

FIG. 8: Areas Project Onto Each Other

And now for the best realization of all. Just as with vectors... the amount of projected area is the original area
times the cosine of the angle between the areas ... and that angle is also the angle between the normals!
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FIG. 9: Areas and their Normals

For this diagram, then, we write: R′ = R cos(α) = R n̂ · n̂′ .

And if we now put all these pieces together,we get a picture like the following one where we have drawn two vectors
and the Parallelogram they define and its normal all positioned in 3-D space.

n

FIG. 10: Oriented Parallelogram

The parallelogram has an area I’m going to call A which is given by: A = ‖~V ‖ ‖ ~W‖ sin(θ). It also has a normal
vector n̂. Both of these geometric entities are Absolute ... and we use them to define the Vector Cross Product ! That

is, we define a new vector that is designated by the symbols ~V × ~W by the following Absolute prescription:

~V × ~W ≡ A n̂ (14)

By the way, the ordering of the vectors is crucial and we specify that {~V , ~W, n̂} form a “right-handed triple” just as

{x̂, ŷ, ẑ} do. So be careful: ~W × ~V = −A n̂ ! At this point, many of you may wish to protest (I know I did! ) . At

the outset of any problem, we will often know our information about ~V and ~W only in Cartesian form! But then,
how do we find n̂ and A ? Well, get ready for the Magic of mathematics. Just suppose then, that it is so, and we
have specified our starting vectors, as is so often the case, by known components:

~V ≡
〈
Vx, Vy, Vz

〉
~W ≡

〈
Wx,Wy,Wz

〉
We know that these vectors project onto the x̂− ŷ plane, giving:

~Vxy ≡
〈
Vx, Vy, 0

〉
~Wxy ≡

〈
Wx,Wy, 0

〉
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And we also know that ~Vxy and ~Wxy in the x̂ − ŷ plane define their own “projected” parallelogram there with an
area given by: VxWy − VyWx . And finally, since we also know that the x̂ − ŷ plane has its normal vector in the ẑ

direction, we can “project” the area ~V × ~W = An̂ onto the x̂− ŷ plane and conclude it must be the case that:

(~V × ~W ) · ẑ = A n̂ · ẑ = VxWy − VyWx

Actually, we can simply permute the axis symbols to collect all three components.

(~V × ~W ) · x̂ = A n̂ · x̂ = VyWz − VzWy (15)

(~V × ~W ) · ŷ = A n̂ · ŷ = VzWx − VxWz

(~V × ~W ) · ẑ = A n̂ · ẑ = VxWy − VyWx

But wait ... (!) ... once we know the dot product of a vector with all the coordinate axes ... we know its components!
We conclude:

~V × ~W ≡ An̂ =
〈

(VyWz − VzWy), (VzWx − VxWz), (VxWy − VyWx)
〉

(16)

Further, since n̂ is a unit vector and ‖n̂‖ = 1, we must have: (n̂ · x̂)2 + (n̂ · ŷ)2 + (n̂ · ẑ)2 = 1 , we can then also
conclude that:

‖~V × ~W‖ = A =
√

(VyWz − VzWy)2 + (VzWx − VxWz)2 + (VxWy − VyWx)2 (17)

You can see that the “Cross Product” ~A× ~B of two vectors can be understood (and used!) in several distinct but
perfectly equivalent ways. We can use Cartesian components or the more abstract Absolute notation which never
even mentions components. The “holistic” or Absolute notational way is usually less familiar and less comfortable
to younger students, whereas the Cartesian way seems more “concrete”. Abstract manipulation often feels “wierd”.
With a bit of practice, however, this mental dichotomy goes away and you will use whatever representation seems
most natural in the moment. We use them both. Let me summarize next, then, the Cross-Product properties in their
Absolute forms:

1. ~A× ~B is itself a vector and is linear in each vector of the product (we say it is bilinear)

so that e.g. ~A× ( ~B + ~C) = ( ~A× ~B) + ( ~A× ~C) etc. .

2. ~A× ~B is perpendicular to both ~A and ~B, so that ~A · ( ~A× ~B) = ~B · ( ~A× ~B) ≡ 0

3. ~A× ~B = − ~B × ~A so that ~A , ~B, and ~A× ~B form a right-handed triple of vectors.

4. ‖ ~A× ~B ‖= ‖ ~A ‖‖ ~B ‖ sin(θincluded)

5. ~A and ~B are parallel ... if and only if ~A× ~B = 0 so ... ~A× ~A ≡ 0.

It will be highly gratifying to observe, at this point, that all of our Cartesian component results - for both the dot
and cross products - pop out of these Absolute relations above, if only we apply then to the unit axis direction vectors
{x̂, ŷ, ẑ}. We need only remember that the dot product gives us “projection = product of parallels” and the cross
product gives us (parallelogram area)·(unit normal direction vector n̂). We list these unit vector relations next.

x̂ · x̂ = 1 (18)

ŷ · ŷ = 1

ẑ · ẑ = 1

x̂ · ŷ = 0

ŷ · ẑ = 0

ẑ · x̂ = 0

x̂× ŷ = 1 ẑ = − ŷ × x̂
ŷ × ẑ = 1 x̂ = − ẑ × ŷ
ẑ × x̂ = 1 ŷ = − x̂× ẑ
x̂× x̂ = 0

ŷ × ŷ = 0

ẑ × ẑ = 0
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We need only take any two vectors specified as ~A = Axx̂ + Ay ŷ + Az ẑ and ~B = Bxx̂ + By ŷ + Bz ẑ and proceed
to simply dot them or cross them term by term. Like a miracle, we re-create the component formulae so tediously
derived above. The two formulations really are equivalent.

We owe the development and popularization of these techniques to the first great mathematical physicist to ever
appear in the United States, Josiah Willard Gibbs of New Haven, Connecticut. The year was about 1881 and he
was an eminent faculty member at Yale University who also made enormous contributions in Physics, Chemistry,
Thermodynamics and Statistical Mechanics. He also published his own personal notes for his students (just such as
these!) .. only in those days publishing was a whole lot harder.

FIG. 11: Josiah Willard Gibbs


