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Global Conservation Laws for Systems

I. INTRODUCTION

The difficulties that arise in solving even the simplest Newtonian problems are amplified enormously whenever we
treat larger collections of particles. This motivates us to seek global theorems describing those relationships which
we believe to be of universal validity irrespective of the specific complexity at hand. In essence, we believe that, no
matter how complicated a system is, certain important features remain simple and we would like to focus in on them
at the very outset. The present summary introduces certain of these central results and provides suggestive derivations
based on Newton’s laws. The standard derivations are, however, open to very many serious objections. Nonetheless,
the ensuing discussion has been rich and fruitful and further contributed to the development of analytical mechanics.

II. CENTER OF MASS

The center of mass ~Rcm of a collection of point masses {m1, m2, . . . ,mn} situated respectively at {~r1, ~r2, . . . , ~rn} is
defined as

Mtot
~Rcm ≡

n∑
i=1

mi ~ri, (1)

where Mtot ≡
∑n

i=1 mi. We now conclude, by simple deduction, that

~Ptot =
∑

i

~pi =
n∑

i=1

mi
d

dt
~ri =

d

dt

n∑
i=1

mi ~ri = Mtot
d

dt
~Rcm = Mtot

~Vcm. (2)

Further,

Mtot
d2

dt2
~Rcm =

d

dt
~Ptot = ~F net external

net , (3)

since by Newton’s third law we believe (under the assumption that internal forces cancel pairwise . . . ) that:

n∑
i=1

~Fi = ~F external
i (4)

i.e. the motion of the center of mass is governed by external forces alone.

III. ENERGY

We note that, by rearranging equation (??) , we may write∑
i

mi

(
~ri − ~Rcm

)
= 0 (5)

so that it is often convenient to write

~ri = ~Rcm + (~ri − ~Rcm) ≡ ~Rcm + ~r ′
i (6)
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where ~r ′
i is the position vector pointing from the center of mass out to the particle. This vector is called the

“relative”position of the particle and this Center of Mass - Relative decomposition is of the greatest possible
significance and utility. To begin with we note that it is always true that:∑

i

mi~r
′

i ≡ 0 (7)

so that it will also be true that:

d

dt

∑
i

mi~r
′

i =
∑

i

mi~v
′

i =
d

dt
(zero) ≡ 0 (8)

Notice that this may also be expressed as: ∑
i

mi
d

dt
~r ′

i =
∑

i

mi~v
′

i ≡ 0 (9)

In that case the kinetic energy may be written

KE =
n∑

i=1

mi

2
d~ri

dt

2

=
1
2

n∑
i=1

mi

(
~Vcm + ~v ′

i

)
·
(

~Vcm + ~v ′
i

)
=

1
2
Mtot

~Vcm · ~Vcm +
1
2

n∑
i=1

mi ~v
′

i · ~v ′
i (10)

where we have made a simple application of equation ( ??) to conclude that

∑
i

mi
~Vcm · ~v ′

i = ~Vcm ·
∑

i

mi~v
′

i ≡ 0

so that the cross terms drop out identically and we are left with:

KEtot = KEcm + KErel

where

KEcm =
1
2
MtotV

2
cm

KErel =
1
2

n∑
i=1

mi (v ′
i )2

and we observe that the Center of Mass - Relative decomposition obtains for the energy as well.

IV. ANGULAR MOMENTUM

In the same way we may also define the total angular momentum and perform our CM-Relative decomposition on
it as before:

~Ltot ≡
n∑

i=1

~ri × ~pi (11)

=
n∑

i=1

(~Rcm + ~r ′
i )×mi(~vcm + ~v ′

i ) (12)

= ~Rcm ×Mtot
~Vcm +

n∑
i=1

~r ′
i ×mi~v

′
i (13)

= ~Lcm + ~Lrel (14)
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We observe that just the same process holds here too. Now, taking a time derivative and using the fundamental
equation of motion, we see:

d

dt
~Ltot =

n∑
i=1

~ri ×
d

dt
~pi (15)

=
n∑

i=1

~ri × ~Fi (16)

=
n∑

i=1

(~Rcm + ~r ′
i )× ~Fi

= ~Rcm ×
n∑

i=1

~Fi +
n∑

i=1

~r ′
i × ~Fi (17)

Again, by Newton’s third law we believe (under the assumption that internal forces cancel pairwise) that:

n∑
i=1

~Fi = ~F net external
i (18)

so that

d

dt
~Ltot = ~Rcm × ~F ext

net +
n∑

i=1

~r ′
i × ~Fi

d

dt
(~Lcm + ~Lrel) = ~Rcm × ~F ext

net +
n∑

i=1

~r ′
i × ~Fi (19)

But since independently (see above) we have:

d

dt
~Lcm = ~Rcm × ~F ext

net (20)

which we can combine with the equations above to achieve the further result:

d

dt
~Lrel =

n∑
i=1

~r ′
i × ~Fi . (21)

This last equation is now finally expressed as

d

dt
~Lrel =

n∑
i=1

~r ′
i × ~F ext

i (22)

under the argument that the net-sum of all internally generated torques must also finally add up to zero.
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V. SUMMARY OF OUR RESULTS

We now collect the central results of this presentation:

Mtot
~Rcm ≡

n∑
i=1

mi ~ri (23)

Mtot
~Vcm =

∑
i

~pi = ~Ptot (24)

Mtot
~Acm =

d

dt
~Ptot = ~F net external

net (25)

KEcm =
1
2
MtotV

2
cm (26)

KErel =
1
2

n∑
i=1

mi (v ′
i )2 (27)

KEtot = KEcm + KErel (28)

d~Lrel

dt
=

n∑
i=1

~r ′
i × ~F ext

i (29)

d~Lcm

dt
= ~Rcm × ~F ext

net (30)


