Physics Department Seminar

Friday April 4th, 2003 11:00am in PhSc 105

"The Way Of The Cross Product: A Gentle Introduction To Lie Algebras And Casimir Operators"

Dr. Thomas Love

(CSU Chico, Physics, 1968)
Departments of Physics and Mathematics
CSU Dominguez Hills

Abstract:

Consider the standard cross product $\hat{i} \times \hat{j} = \hat{k}$, etc. Using the cross product as an operation, how many operators, \mathbf{C} , can be constructed as polynomials in $(\hat{i} \times)$, $(\hat{j} \times)$ and $(\hat{k} \times)$ which satisfy

 $\vec{CA} = \alpha \vec{A}$ for all vectors in R^3?

For example: $(\hat{i} \times (\hat{i} \times \vec{A})) + (\hat{j} \times (\hat{j} \times \vec{A})) + (\hat{k} \times (\hat{k} \times \vec{A})) = -2\vec{A}$

This is important in classical and quantum mechanics because such operators determine the conserved quantities.

