Physics Department Seminar

NOTE SPECIAL DATE & TIME:

Tuesday April 15th, 2008 5:00pm in PhSc 130

"An Eye-Safe Tunable Cr4+: YAG Laser For Lidar Applications"

Dr. Anna Petrova-Mayor Institute for Physics and Meteorology University of Hohenheim, Germany

Abstract:

A gain switched tunable Cr4+:YAG laser was developed using a Q-switched flash-lamp-pumped Nd:YAG pump laser at 10 Hz. Applying a vacuum spatial filter resulted in a nearly Gaussian-shaped beam profile which enabled safe pumping of the Cr4+:YAG crystal with pulse energies in excess of 100 mJ. A maximum output energy of \approx 7 mJ at 1430–1450 nm, corresponding to \approx 7 % conversion efficiency, and a pulse duration of 30–35 ns were obtained with a 25-cm long stable resonator. Tunability in the range 1350–1500 nm and spectral linewidth of \approx 200 GHz were demonstrated using a 3-plate birefringent filter. The laser was multimode with a flat-top profile. The performance and size of the laser are acceptable for use in a laboratory-based non-scanning lidar system if a narrow-band birefringent filter is installed. To employ the laser in a scanning mobile lidar, high pulse repetition rate (\geq 100 Hz) of the pump laser is required. The tenability and spectral purity would

permit the improvement of the laser transmitter for water-vapor DIAL measurements at on-line wavelengths of approximately 1459 nm or 1484 nm if injection-seeding is applied.

