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Summary

� What I do
I model light propagation in biological tissues for

the purpose of locating early stage cancer cells.
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Tissue Structure

a. Epithelial Layer

b. Stromal Layer

c. Smooth Muscle Layer
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Setup

Goal: Model diffuse reflectance measurements of backscattered
light by a turbid medium close to the source.
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Setup

Goal: Model diffuse reflectance measurements of backscattered
light by a turbid medium close to the source.

� Use a thin continuous beam incident normally on the medium

� Represent medium by a semi-infinite half space

� Given constant scattering and absorption coefficients
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Light Propagation In Tissue

� Microscopic

Maxwell’s equations provide a rigorous model for
EM wave propagation
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Light Propagation In Tissue

� Microscopic
Maxwell’s equations provide a rigorous model for

EM wave propagation
� Mesoscopic

The Radiative Transport equation provides a
model for light propagation as transport of
particles
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Radiative Transport Equation

The Radiative Transport Equation is given by:

ŝ · ∇I + µaI + µsL I = 0
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Radiative Transport Equation

The Radiative Transport Equation is given by:

ŝ · ∇I + µaI + µsL I = 0

L I = I −

∫

S2

p(ŝ · ŝ′)I(ŝ′, r)dŝ′
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Radiative Transport Equation

The Radiative Transport Equation is given by:

ŝ · ∇I + µaI + µsL I = 0

L I = I −

∫

S2

p(ŝ · ŝ′)I(ŝ′, r)dŝ′

p defines the fraction of power scattered in direction ŝ

incident from direction ŝ
′.

∫

S2

p(ŝ · ŝ′)dŝ′ = 1
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Boundary Condition

For a normally incident, Gaussian beam we consider

I(µ, ϕ, x, y, 0) − r(µ)I(−µ, ϕ, x, y, 0) =
δ(µ− 1)

2π
f(x, y), 0 < µ ≤ 1

f(x, y) =
1

2πw2
e
−

x2 + y2

2w2
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Boundary Condition

For a normally incident, Gaussian beam we consider

I(µ, ϕ, x, y, 0) − r(µ)I(−µ, ϕ, x, y, 0) =
δ(µ− 1)

2π
f(x, y), 0 < µ ≤ 1

f(x, y) =
1

2πw2
e
−

x2 + y2

2w2

and

I → 0 as z → ∞

In this, r(µ) is the Fresnel reflection coefficient at the boundary.
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Light Propagation In Tissue

� Microscopic
Maxwell’s equations provide a rigorous model for

EM wave propagation
� Mesoscopic

The Radiative Transport equation provides a
model for light propagation as transport of
particles

� Macroscopic
The Diffusion Approximation is an approximation

to the RTE.
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Diffusion Approximation

� We assume scattering is strong and absorption is weak (µs >> µa)
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Diffusion Approximation

� We assume scattering is strong and absorption is weak (µs >> µa)

� We assume isotropic scattering (g = 0)

� The Diffusion equation is of the form

∇ · (D∇Φ)− µaΦ = S.

in this, D =
1

3(µa + µs(1− g)
, and S is the interior source term.
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Diffusion Approximation

� We assume scattering is strong and absorption is weak (µs >> µa)

� We assume isotropic scattering (g = 0)

� The Diffusion equation is of the form

∇ · (D∇Φ)− µaΦ = S.

in this, D =
1

3(µa + µs(1− g))
, and S is the interior source term.

Problem: This is known to be invalid close to the source.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Rho

R

Reflectance Comparison

 

 
Monte Carlo
Diffusion

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Rho

R

Reflectance Comparison

 

 
Monte Carlo
Diffusion

The Corrected Diffusion Approximation – p.21/60



Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues
close to the boundary
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Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues
close to the boundary
� Compute Interior Solution (Diffusion, Φ)
� Compute Boundary Layer Solution (RTE, Ψ)
� Combine results to satisfy original conditions

I(x, y, z, ŝ) = Φ(x, y, z) + Ψ(x, y, z, ŝ)
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Derivation of CDA: Rescaling

� Three length scales in our analysis (ℓs ≪ w ≪ ℓa)

Scattering mean free path, ℓs =
1

µs

Characteristic absorption length, ℓa =
1

µa

Beam width w
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Derivation of CDA: Rescaling

� Three length scales in our analysis (ℓs ≪ w ≪ ℓa)

Scattering mean free path, ℓs =
1

µs

Characteristic absorption length, ℓa =
1

µa

Beam width w

� Use our length scales to define small parameters α and β

α =
ℓs

ℓa

β =
ℓs

w
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Derivation of CDA: Rescaling

� Three length scales in our analysis (ℓs ≪ w ≪ ℓa)

Scattering mean free path, ℓs =
1

µs

Characteristic absorption length, ℓa =
1

µa

Beam width w

� Use our length scales to define small parameters α and β

α =
ℓs

ℓa

β =
ℓs

w

� Rescale (x, y, z) with respect to w which nondimensionalizes the problem

� Solve the rescaled, nondimensionalized equation using the fact that
α≪ β ≪ 1

The Corrected Diffusion Approximation – p.28/60



CDA: Rescaled Problem

βµ∂zI + β
√

1− µ2(cosϕ∂xI + sinϕ∂yI) + αI + L I = 0
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CDA: Rescaled Problem

βµ∂zI + β
√

1− µ2(cosϕ∂xI + sinϕ∂yI) + αI + L I = 0

Subject to boundary conditions

I(µ, ϕ, x, y, 0) =
δ(µ− 1)

2π
f(x, y) + r(µ)I(−µ, ϕ, x, y, 0), 0 < µ ≤ 1,

I → 0 as z → ∞.
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CDA: Rescaled Problem

βµ∂zI + β
√

1− µ2(cosϕ∂xI + sinϕ∂yI) + αI + L I = 0

Subject to boundary conditions

I(µ, ϕ, x, y, 0) =
δ(µ− 1)

2π
f(x, y) + r(µ)I(−µ, ϕ, x, y, 0), 0 < µ ≤ 1,

I → 0 as z → ∞.

In these, r(µ) is the Fresnel reflection coefficient at the boundary.

We represent I as the sum of an interior solution and a boundary layer solution as in a.

(I = Φ+Ψ)

aS. B. Rohde and A. D. Kim, “Modeling the diffuse reflectance due to a narrow beam

incident on a turbid medium,” J. Opt. Soc. Am. A, 29, 231-238 (2012).
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Interior Solution

In solving for Φ, we find that φ0 must satisfy the nondimensionalized diffusion
equation

∇ · (κ∇φ0)−
α

β2
φ0 = 0.
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Interior Solution

In solving for Φ, we find that φ0 must satisfy the nondimensionalized diffusion
equation

∇ · (κ∇φ0)−
α

β2
φ0 = 0.

in this κ =
1

3(1− g)
, and we have a solution of the form

Φ = φ0(r)− βŝ · [3κ∇φ0(r)] +O(β2),
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Interior Solution

In solving for Φ, we find that φ0 must satisfy the nondimensionalized diffusion
equation

∇ · (κ∇φ0)−
α

β2
φ0 = 0.

in this κ =
1

3(1− g)
, and we have a solution of the form

Φ = φ0(r)− βŝ · [3κ∇φ0(r)] +O(β2),

This solution alone cannot satisfy the boundary condition, and we apply a
boundary layer solution
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Boundary Layer Solution

Introduce stretched variable z = βZ, such that

ψ(ŝ, x, y, Z) = Ψ(ŝ, x, y, βZ),
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Boundary Layer Solution

Introduce stretched variable z = βZ, such that

ψ(ŝ, x, y, Z) = Ψ(ŝ, x, y, βZ),

substitute into the RTE

µψZ + β
√

1− µ2(cosϕψx + sinϕψy) + αψ + Lψ = 0
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Boundary Condition

We apply the modified boundary condition for ψ = I − Φ

ψ(µ, ϕ, x, y, 0)− r(µ)ψ(−µ, ϕ, x, y, 0) =

δ(µ− 1)

2π
f(x, y)− [1−r(µ)]φ0(x, y, 0)+3βκµ[1+r(µ)]φ0,z(x, y, 0), 0 < µ ≤ 1

Where ψ = ψ0 + βψ1
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Boundary Condition

We apply the modified boundary condition for ψ = I − Φ

ψ(µ, ϕ, x, y, 0)− r(µ)ψ(−µ, ϕ, x, y, 0) =

δ(µ− 1)

2π
f(x, y)− [1−r(µ)]φ0(x, y, 0)+3βκµ[1+r(µ)]φ0,z(x, y, 0), 0 < µ ≤ 1

Where ψ = ψ0 + βψ1, and ψ0 satisfies the 1-D RTE

µψ0,Z + Lψ0 = 0.

ψ1 satisfies

µψ1,Z + Lψ1 = −
√

1− µ2(cosϕψ0,x + sinϕψ0,y)
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Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant
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Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant

We ensure that the constant solution is zero to satisfy ψ → 0 as Z → ∞

This returns the boundary condition for the diffusion approximation

a0φ0 − b0φ0,z = f0f(x, y), z = 0

The Corrected Diffusion Approximation – p.41/60



Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant

We ensure that the constant solution is zero to satisfy ψ → 0 as Z → ∞

This returns the boundary condition for the diffusion approximation

a0φ0 − b0φ0,z = f0f(x, y), z = 0

a0, b0, and f0 are determined numerically using the boundary condition

for ψ and a numerically calculated Green’s function for the 1-D RTE
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Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant

We ensure that the constant solution is zero to satisfy ψ → 0 as Z → ∞

This returns the boundary condition for the diffusion approximation

a0φ0 − b0φ0,z = f0f(x, y), z = 0

a0, b0, and f0 are determined numerically using the boundary condition

for ψ and a numerically calculated Green’s function for the 1-D RTE

We next solve for φ and then apply the full boundary condition with the

numerically calculated Green’s function to determine ψ
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Interior Solution: Diffusion Approximation Solution

We can now solve

∇ · (κ∇φ)− αφ = 0,

a0φ− b0φz = f0f(xy), at z = 0.
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Interior Solution: Diffusion Approximation Solution

We can now solve

∇ · (κ∇φ)− αφ = 0,

a0φ− b0φz = f0f(xy), at z = 0.

Using Fourier Transforms (x, y) → (ξ, η)

−ξ2κφ̂− η2κφ̂+ κ∂2z φ̂− αφ̂ = 0,
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Interior Solution: Diffusion Approximation Solution

We can now solve

∇ · (κ∇φ)− αφ = 0,

a0φ− b0φz = f0f(xy), at z = 0.

Using Fourier Transforms (x, y) → (ξ, η)

−ξ2κφ̂− η2κφ̂+ κ∂2z φ̂− αφ̂ = 0,

Since φ decays exponentially in z we set γ(ξ, η) = −
√

α/κ+ ξ2 + η2.

Substituting this into the BC we find

φ̂ =
f0f̂(ξ, η)

a0 + b0γ
, z = 0.
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Reflectance Calculation

� Solve 1D RTE with Plane Wave Solutions
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Reflectance Calculation

� Solve 1D RTE with Plane Wave Solutions

� Build Greens Function numerically
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Reflectance Calculation

� Solve 1D RTE with Plane Wave Solutions

� Build Greens Function numerically

� Integrate with our source terms to solve for Ψ and Φ, I = Ψ+Φ
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Reflectance Calculation

� Solve 1D RTE with Plane Wave Solutions b

� Build Greens Function numerically

� Integrate with our source terms to solve for Ψ and Φ, I = Ψ+Φ

� Integrate over the range of angles exiting the medium to determine

reflectance at the boundary

R(x, y) = −

∫∫

NA

I(r, ŝ)ŝ · ẑdŝ.

bA. D. Kim, “Correcting the diffusion approximation at the boundary,” J. Opt. Soc. Am.

A 28, 1007-1015 (2011).
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Results: How good is it?

µa = .2(mm)−1, µs = 100(mm)−1, g = 0.8, nrel = 1.4, BeamFWHM = 1
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Results: How good is it?

µa = 2(mm)−1, µs = 100(mm)−1, g = 0.8, nrel = 1.4, BeamFWHM = 1
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Results: How good is it?

µa = 5(mm)−1, µs = 100(mm)−1, g = 0.8, nrel = 1.4, BeamFWHM = 1
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Results: How good is it?

µa = 10(mm)−1, µs = 100(mm)−1, g = 0.8, nrel = 1.4, BeamFWHM = 1
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Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements
close to the source
� We have extended it to include Fresnel reflection, layered tissues, and oblique incidence

� These models give us an option for modeling epithelial tissue specifically in an effort to

locate early stage cancer cells, as well as an effective and invertible model for

calculating optical properties of tissue
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Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements
close to the source
� We have extended it to include Fresnel reflection, layered tissues, and oblique incidence

� These models give us an option for modeling epithelial tissue specifically in an effort to

locate early stage cancer cells, as well as an effective and invertible model for

calculating optical properties of tissue

To Do:
� Inverse problem

� Spatial frequency domain problem
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Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements
close to the source
� We have extended it to include Fresnel reflection, layered tissues, and oblique incidence

� These models give us an option for modeling epithelial tissue specifically in an effort to

locate early stage cancer cells, as well as an effective and invertible model for

calculating optical properties of tissue

To Do:
� Inverse problem

� Spatial frequency domain problem
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Thank you!
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