Uniform Circular Motion

Pre-Class Questions

Problem Set (due next time) Ch 3 - 31, 33, 34, 36

Lecture Outline

- I. Vectors and Uniform Circular Motion
- 2. Centripetal Acceleration

At the left is a sketch of the moon orbiting Earth. Use the center of Earth as the origin. For each of the four images of the moon:

- 1. draw the position vector.
- 2. draw the velocity vector.
- 3. compare the lengths of each position vector?
- 4. compare the lengths of each velocity vector?
- 5. does the moon accelerate in its orbit? Explain.

Example 1:The moon is 3.84x10⁸m from Earth and it takes 27.3 days or 2.36x10⁶s to complete one orbit. Find (a)the magnitude of the position vector and (a)the magnitude of the velocity vector using the center of Earth as the origin.

Þ

At the right is a sketch of the moon orbiting Earth. The position and velocity vectors are shown at two times Δt apart during which the position and velocity vectors both rotate through an angle θ :

- 1. Draw the displacement vector $\Delta \vec{r}$. Label the triangle formed by the r vectors and Δr with an A.
- 2. Redraw the two velocity vectors on the coordinate systems at the right with their tails at the origin. Include the angle θ .
- 3. Draw the change in velocity vector $\Delta \vec{v}$. Label the triangle formed by the v vectors and Δv with a B.
- 4. Explain why A and B are similar triangles.
- 5. Find the ratio $\frac{\Delta v}{\Delta r}$ in terms of r and v. Solve for Δv .
- Divide ∆v by ∆t to get the magnitude of the acceleration vector.
- 7. Show the result is, $a = \frac{v^2}{r}$

Lecture 08

Example 2:A physics professor twirls a ball overhead in a circle of radius 50cm, The ball completes 5.0 revolutions per second. Find (a) the speed and (b) the acceleration of the ball.

Question: You come upon two friends arguing. The first one says that the moon orbits Earth at a constant velocity and therefore the moon is not accelerating. The second one says that since the moon in moving in a circle it must have a centripetal acceleration even though it has a constant velocity. Resolve their dispute.

D

Lecture 08 - Summary

Circular Motion - acceleration is directed toward the center.

Centripetal Acceleration $a_c = \frac{v^2}{r}$

D

Review for First Exam

Quantity	Definition	Mathematically
Position	The location of an object with respect to a coordinate system.	\vec{r}
Displacement	A change in position.	$\Delta \vec{r} \equiv \vec{r}_f - \vec{r}_i \text{ or } \Delta x \equiv x_f - x_i \text{ and}$ $\Delta y \equiv y_f - y_i$
Average Velocity	The average rate of displacement.	$\vec{v} \equiv \frac{\Delta \vec{r}}{\Delta t}$ or $v_x = \frac{\Delta x}{\Delta t}$ and $v_y = \frac{\Delta y}{\Delta t}$
Speed	The magnitude of the velocity vector.	$\mathbf{v} \equiv \left \vec{\mathbf{v}} \right = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2}}$
Average Acceleration	The rate of change of velocity.	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ or $a_x = \frac{\Delta v_x}{\Delta t}$ and $a_y = \frac{\Delta v_y}{\Delta t}$

Kinematic	Missing
equation	variable
$v = v_o + at$	$x - x_o$
$x = x_o + v_o t + \frac{1}{2}at^2$	<u>v</u>
$v^2 = v_o^2 + 2a(x - x_o)$	ţ

Centripetal Acceleration $a_c = \frac{v^2}{r}$

Lecture 08

Review for First Exam

Physics 202A Equation Sheet for Exam 1

Laws, Principles, Useful Relationships, and Other Information

The Definition of Velocity: $\vec{v} \equiv \frac{\Delta \vec{r}}{\Delta t}$ The Definition of Acceleration: $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ The Kinematic Equations: $v = v_o + at$ $x = x_0 + v_0 t + \frac{1}{2} a t^2$ $v^{2} = v_{0}^{2} + 2a(x - x_{0})$ Centripetal Acceleration: $a_c = \frac{v^2}{r}$ Acceleration due to gravity $g = 9.80 \text{ m/s}^2$ Earth - mass: 5.98 x 10²⁴ kg radius: 6.38 x 10⁶ m Moon - mass: 7.36 x 10²² kg radius: 1.74 x 10⁶ m Sun - mass: 1.99 x 10³⁰ kg radius: 6.96 x 10⁸ m Earth - moon distance: $3.82 \times 10^8 \text{ m}$ Sun - Earth distance: 1.50 x 10¹¹ m

Þ