Describing Rotational Motion

Pre-Class Questions

Problem Set (due next time) Ch 9 - 9, 14, 18, 23

Lecture Outline

- I. The Definitions of the Rotational Variables
- 2. Rotational Kinematics

Translational Variables	Rotational Variables
Position: The location of an object with	Angle: The rotational location of an object with respect
respect to a coordinate system.	to a coordinate system.
<u>Velocity</u> : The rate of displacement.	Angular Velocity: The rate of angular displacement.
Acceleration: The rate of change of	Angular Acceleration: The rate of change of angular
velocity.	velocity.

Lecture 22

Lecture 22

Translational Variables	Rotational Variables	Relationship
Position: x	<u>Angle</u> : θ	$s = r\theta$
<u>Velocity</u> : $v \equiv \frac{\Delta x}{\Delta t}$	<u>Angular Velocity</u> : $\omega \equiv \frac{\Delta \theta}{\Delta t}$	$v \equiv \frac{\Delta s}{\Delta t} = \frac{r \Delta \theta}{\Delta t} \Longrightarrow v_t = r\omega$
<u>Acceleration</u> : $a \equiv \frac{\Delta v}{\Delta t}$	<u>Angular Acceleration</u> : $\alpha \equiv \frac{\Delta \omega}{\Delta t}$	$a_c = \frac{v_t^2}{r} = \frac{(r\omega)^2}{r} \Longrightarrow a_c = \omega^2 r$

Example 1: A CD 12.0cm in diameter is placed in a drive. It starts at rest and reaches 200rpm in 1.20s. Find (a)the average angular acceleration and (b)the radial acceleration of a point on the rim when the rotation rate is 200rpm.

D

Below is a sketch of a merry go round. Rank these horses by their angular speed.

Below is a sketch of a merry go round. Rank these horses by their tangential speed.

The Kinematic Equations

$$v \equiv \frac{\Delta x}{\Delta t}$$

$$a \equiv \frac{\Delta v}{\Delta t}$$

$$\Delta a = 0$$

$$\omega \equiv \frac{\Delta \theta}{\Delta t}$$

$$\alpha \equiv \frac{\Delta \omega}{\Delta t}$$

$$\Delta \alpha = 0$$

$$w = \frac{\Delta \omega}{\Delta t}$$

$$\Delta \alpha = 0$$

$$w = \frac{\Delta \omega}{\Delta t}$$

$$\Delta \alpha = 0$$

$$w = \frac{\Delta \omega}{\Delta t}$$

$$\Delta \alpha = 0$$

$$w = \frac{\Delta \omega}{\Delta t}$$

$$\omega = \frac{\Delta \omega}{\Delta t}$$

$$\omega^{2} = \omega_{o}^{2} + 2\alpha(\theta - \theta_{o})$$

Example 2: For the CD of example 1, find (a) the number of revolutions and (b) the distance traveled by a point on the edge of the CD.

Þ

Lecture 22 - Summary

The Definitions of Rotational Variables

Translational Variables	Rotational Variables	Relationship
Position: x	<u>Angle</u> : θ	$s = r\theta$
<u>Velocity</u> : $v \equiv \frac{\Delta x}{\Delta t}$	<u>Angular Velocity</u> : $\omega \equiv \frac{\Delta \theta}{\Delta t}$	$v \equiv \frac{\Delta s}{\Delta t} = \frac{r \Delta \theta}{\Delta t} \Longrightarrow v_t = r\omega$
<u>Acceleration</u> : $a \equiv \frac{\Delta v}{\Delta t}$	<u>Angular Acceleration</u> : $\alpha \equiv \frac{\Delta \omega}{\Delta t}$	$a_c = \frac{v_t^2}{r} = \frac{(r\omega)^2}{r} \Longrightarrow a_c = \omega^2 r$

If the angular acceleration is constant the kinematic equations apply.