Superposition and Standing Waves

Pre-Class Questions

Problem Set (due next time)
Ch 12 - I5b, 16, 25, 30

Lecture Outline
I. The Principle of Superposition
2. Standing Waves on a String
3. Standing Sound Waves in Pipes

http://www.youtube.com/watch?v=3d2gfklih5E

conceptual Physícs practice page

Chapter 20 Sound

Wave Superposition

A pair of pulses travel toward each other at equal speeds. The composite waveforms, as they pass through each other and interfere, are shown at 1-second intervals. In the left column note how the pulses interfere to produce the composite waveform (solid line). Make a similar construction for the two wave pulses in the right column. Like the pulses in the first column, they each travel at 1 space per second

$1^{\text {st }}$ harmonic Fundamental

$2^{\text {nd }}$ Harmonic, $1^{\text {th }}$ overtone

$3^{\text {rd }}$ Harmonic, $2^{\text {nd }}$ Overtone
Wavelength $=2 \mathrm{~L} / 3$ Frequency $=3 \mathrm{f}$

The figures below show systems of standing waves set up in strings, fixed at both ends, under tension. All of the strings are identical except for their lengths and are under the same tension. The variables in these situations, in addition to the lengths (L) of the strings, are the amplitudes (A) at the antinodes and the number of nodes.

Rank these systems, from greatest to least, on the basis of the wavelengths of the waves.

D $\quad A=16 \mathrm{~cm} \quad L=28 \mathrm{~cm}$

E $\quad A=24 \mathrm{~cm} \quad L=20 \mathrm{~cm}$

G

Greatest \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad Least
Or, all of these systems have the same wavelength. \qquad
Please carefully explain your reasoning.

Shown below are six standing wave systems in strings. These systems vary in frequency of oscillation, tension in the strings, and number of nodes. The systems are also set up in various strings. The specific values for the string tensions and the frequencies of oscillation are given in each figure. All of the strings have the same length.

Rank these systems, from greatest to least, on the basis of the speeds of the waves in the strings. That is, put first the system whose waves have the greatest speed in their string and put last the system whose waves are traveling slowest in their string.

Greatest 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad Least

Or, all of the waves in these systems have the same speed. \qquad
Please carefully explain your reasoning.

Example I: The E-string on the guitar has a fundamental frequency of 330 HZ and is 60 cm long. Find the frequencies and wavelengths of the first four harmonics.

Open at Both Ends

2nd Harmonic

3rd Harmonic

Closed at One End

Harmonic Wavelength $\lambda \quad$ Frequency f

$1^{\text {st }}$	$2 L$	f_{1}
$2^{\text {nd }}$	L	$2 f_{1}$
$3^{\text {rd }}$	$2 L / 3$	$3 f_{1}$

Odd and Even Harmonics

$1^{\text {st }}$	$4 L$	f_{1}
$3^{\text {rd }}$	$4 L / 3$	$3 f_{1}$
$5^{\text {th }}$	$4 L / 5$	$5 f_{1}$

Odd Harmonics

Example 2: A clarinet is 72.0 cm long. Find the frequencies and wavelengths of the first four harmonics.

Major Scale

Happy Birthday

Twinkle Twinkle

Lecture 3 I

Lecture 31-Summary

Principle of Superposition:Waves add point by point.
Standing Waves

String	$\lambda_{n}=\frac{2 L}{n}$	$f_{n}=n f_{1}$
Pipes open at both ends	$\lambda_{n}=\frac{2 L}{n}$	$f_{n}=n f_{1}$
Pipes closed at one end	$\lambda_{n}=\frac{4 L}{n}$	$f_{n}=n f_{1}$
odd n only		

