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Chapter 32 - Magnetism of Matter; Maxwell’s Equations

Problem Set #11 - due:
Ch 32 - 3, 7, 11, 18, 20, 21, 22, 30, 31, 34, 38, 45

Lecture Outline
1. Magnets as Dipoles
2. Gauss’ Law for Magnetism
3. Magnetism in Matter
4. Three Types of Magnetic Behavior
5. Induced Magnetic Fields
6. Maxwell's Equations

At this point we know the laws that describe electric fields.  They are,

Gauss's Law for Electricity
  

r 
E • d

r 
A ∫ =

q

εo

[Charge creates diverging E fields]

Faraday's Law of Induction
  

r 
E • d

r 
s ∫ = −

dΦB

dt
[Changing B's create circulating E's]

The laws that explain the properties of magnetic fields aren’t complete.  As far as we know, the only way
to create a magnetic field is with a current and this relationship is given by,

Ampere's Law    
  

r 
B • d

r 
s ∫ = µo

dq

dt
[Currents make circulating B fields]

In this chapter we will complete the laws of magnetism by examining magnets and by finding a way to
induce magnetic fields.  The complete laws of electricity and magnetism are known as “Maxwell’s
Equations.”

   1. Magnets as Dipoles

By looking at the laws for electric fields you begin to

wonder about 
  

r 
B • d

r 
A ∫ = ? .

In other words, are there ways to make diverging

magnetic fields.  Is there something analogous to electric

charges that produce diverging magnetic fields.  The obvious

guess would be a magnet.

Magnetic Filing Demo w/ wire, coil, magnet
and power supply

The magnetic field of a magnet isn’t diverging.  A magnet

produces a field that is the same shape as the field due to a

coil.  Therefor a magnet is a dipole.  That is why breaking a

magnet in half doesn’t separate the north pole from the south

pole.  Instead it creates two new magnets.

There is no known way to create a single magnetic pole.

coil

The magnetic field lines due to a coil.

NS

magnet

The magnetic field lines due to a magnet.
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   2. Gauss' Law for Magnetism

Beyond the Mechanical Universe (vol.  34 Ch 18,19,20,21,22)

Gauss's Law for electric fields states that the electric flux through a closed surface is proportional to the

enclosed charges.  The same statement can be made for the magnetic flux,
  

r 
B • d

r 
A = µo∫ qenclosed

(m)  where

qenclosed
(m)  is the magnetic charge of a "magnetic monopole."  Since magnetism is always caused by currents

there are only magnetic dipoles, therefor, qenclosed
(m) = 0  and Gauss's Law for Magnetic Fields is,

  
r 
B • d

r 
A = 0∫ Gauss's Law for Magnetism

Theories of the interaction of fundamental particles often predict the existence of magnetic monopoles.

These theories are always suspect because no magnetic monopole has ever been found.

   3. Magnetism in Matter

Beyond the Mechanical Universe (vol. 35 Ch 14,15,16)

The macroscopic properties of matter are a manifestation of the microscopic properties of the atoms of
which it is composed.  The magnetic dipole moments of moving electrons, protons, and neutrons create
the magnetic fields of bulk materials.  The motions of these particles can be broken down into orbital
motion (e.g. electrons) and spinning motion.

    The Magnetic Moment of an Orbiting Charge   

The current created by the orbiting charge is, I ≡
dQ

dt
=

Q
2πr

v
=

Qv

2πr
.

The magnetic moment of the orbiting charge is

  

r 
µ ≡ I

r 
A ⇒ µo =

Qv

2πr
πr2 = 1

2 Qvr =
Q

2m
⋅ mvr =

Q

2m
⋅ Lo .

Putting in the vector signs, 
  

r 
µ o =

Q

2m
⋅
r 
L o

    Example        1:     An electron in the ground state of the hydrogen atom has an orbital angular momentum

of 1.05x10-34J·s.  Find the orbital magnetic moment.

The magnetic moment due to an orbiting charge is

µo =
Q

2m
⋅ Lo =

1.60x10−19

2(9.11x10−31)
(1.05x10−34) = 9.22x10−24A ⋅ m2 .

This is called the "Bohr Magneton" and it is verified experimentally.

r
Q,m

v

µ
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    The Magnetic Moment of a Spinning Charge

The current created by a ring of spinning charge, dq, is,

dI ≡
dq

T
=

dq
2π

ω
=

ωdq

2π
.

The magnetic moment of the spinning ring of charge is

dµ s ≡ dIA ⇒ dµs =
ωdq

2π
πr2 = 1

2 ωr2dq .

Summing over the rings, µs = 1
2 ω r2dq∫ .

For lack of a better idea assume that the charge is distributed in the same way

as the mass, 
dq

Q
=

dm

m
⇒ µs =

Q

2m
ω r2dm∫ .  The integral is the rotational

inertia and the product of the rotational inertia and the angular speed is the angular momentum.  Now the

magnetic moment can be written, 
  

r 
µ s =

Q

2m

r 
L s  which is just like the result for the orbiting charge.

    Example        2:     An electron is known to have a spin angular momentum of 0.527x10-34J·s.  Find the

spin magnetic moment.

The magnetic moment due to a spinning charge is

µs =
Q

2m
⋅ Ls =

1.60x10−19

2(9.11x10−31)
(0.527x10−34 ) = 4.63x10−24A ⋅ m2 .

The bad news is that experiments show that the actual number is twice as big as this result.  The

problem lies with the assumption about the charge distribution.  To correct for this mistake the spin

magnetic moment is usually written, 
  

r 
µ s = g

Q

2m

r 
L s  where g is called the "gyromagnetic ratio."  Its

value is g=2 for an electron.

In summary, the magnetic moment of a moving charge is directly proportional to its angular momentum.

  

r 
µ =

q

2m

r 
L The Magnetic Moment of a Charge

     Magnetization

In a bulk material where no applied magnetic field is present

the magnetic dipoles are randomly aligned as shown at the

left.  The total magnetic field due to all the dipoles cancels to

zero.  When a field, Bo, is applied to the material, the dipoles

tend to align with the applied field.  In turn, they now produce

a net field, Ba.  This field due to the aligned dipoles can, in

principle, be calculated by adding up the fields of the individual dipoles.
The total field due to alignment should be,   

r 
B a = Σ

r 
B i .

r

Q,m

dq, dm

R

ω

Bo
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The field due to an individual dipole roughly the field on the axis of a very small ring,

  

r 
B i =

µoI

2
⋅ a 2

a 2 + r i
2( ) 3

2
ˆ r i .

Since ri >> a, 
  

r 
B i ≈

µoI

2
⋅
a2

r i
3 ˆ r i =

µoI

2π
⋅
πa 2

ri
3 ˆ r i =

µo

2π
⋅

r 
µ i
r i

3 .

The field due the alignment is, 
  

r 
B a = Σ

µo

2π
⋅

r 
µ i
r i

3 ≈ µo

r 
µ 

vol
 where 

  

r 
µ 

vol
 is some sort of average dipole

moment per unit volume.  This quantity is defined to be the "Magnetization."

  

r 
M ≡

r 
µ 

vol
The Definition of Magnetization

The field due to the aligned dipoles can be written as,   
r 
B a = µo

r 
M 

The total magnetic field is   
r 
B =

r 
B o +µo

r 
M .

   4. Three Types of Magnetic Behavior

    Paramagnetism:     This is the most common form of magnetic behavior.  The spin magnetic moments tend
to align with an applied magnetic field.  Typically complete alignment is prevented by the thermal motions
of the atoms.

paramagnetism: M > 0 but fairly small.

    Diamagnetism:     Materials that have very small spin
magnetic moments can actually produce a magnetic field
that is opposite to the applied field.  This is caused by
the random motion of electrons.  In the absence of the
applied field the electrons move randomly as shown on
the left.  When the field is applied out of the page as
shown at the right, they begin to move in clockwise
circular orbits as shown.  These orbiting electrons create
a field into the page, opposite to the applied field.

diamagnetism: M < 0 but very small.

    Ferromagnetism:     This form of magnetic behavior
explains the common magnet.  The spin magnetic
moments in these materials are extremely easy to
align.  So easy, in fact, they can keep each other
aligned.  The spin magnetic moments of the atoms
are shown at the left.  The currents due to these
moments tend to cancel except at the surface.  The
same net effect can be created by replacing the
individual currents with a single imaginary current
around the outer surface.  The resulting field can be
thought of as if it were caused by this current.  The
field due to such a magnet is shown below.

e
e

e
e

e

e

e

resultant imaginary 
surface current



Physics 4B Lecture Notes

32-5

imaginary 
surface
current

dipole 
field

magnet

N

ferromagnetism: M > 0 and very large.

We have finally explained the common refrigerator magnet!

   5. Induced Magnetic Fields

Are there other ways, besides currents, to create circulating magnetic fields?  Yes! with changing E-fields.

Beyond the Mechanical Universe (vol. 39 Ch 30,31,32)

Here is an illustration of an ambiguity in Ampere's Law.  Current

is shown flowing through a capacitor as it charges. The path

integral of B around the indicated path gives a definite value, but

it is not clear what is meant by ienclosed.  Is it the current that

crosses the plane surface s1 or can it be the current the that

crosses any surface that is bounded by the path?  If so, the surface s2 has no current crossing it.  It can't

matter which surface we pick, so Ampere's Law must contain another term on the right hand side to

account for surfaces such as s2.  It is called the "displacement current" id.  Now we can write,

  
r 
B • d

r 
s = µo∫ ienclosed + id( )  where id = 0 on s1 and id = I on s2.

The origin of the displacement term can be understood by considering the fact that its units must also be

units of current so, id =
dq

dt
.  Since there is no charge flowing across s2 perhaps this q is the charge on

the capacitor q=CV.  Assuming parallel plates, q = εo
A

d( ) Ed( ) = εoEA and the displacement current is

id =
d

dt
εo EA( ) = εo

d

dt
EA( ) = εo

dΦe

dt
.

The corrected Ampere's Law is,

  

r 
B • d

r 
s = µo∫ ienclosed +µoεo

dΦe

dt
Ampere's Law

II

path

s2

1s
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    Example        3:     A current of 5.00mA flows into a 10.0pF capacitor with circular plates of radius

2.00cm.  Find (a)the displacement current, (b)the rate of change of the electric flux, (c)the rate of

change of electric field, (d)the magnetic field 3.00cm from the center of the plates, and (e)the

magnetic field 1.00cm from the center of the plates.

(a)The total displacement current must equal the actual current id = 5.00mA.

(b)The displacement current is proportional to the rate of change of flux,

 id = εo
dΦe

dt
⇒

dΦe

dt
=

id

εo
= 5.65x108 V⋅m

s .

(c)Using the definition of flux, 
  
dΦe

dt
=

d

dt

r 
E •d

r 
A ∫ .  Since the field between the plates is not a

function of position, 
dΦe

dt
=

d

dt
EA = πr2 dE

dt
⇒

dE

dt
=

1

πr2
dΦe

dt
= 4.50x1011 V

m⋅s  (r = 2.00cm)

(d)Apply Ampere's Law to a 3.00cm radius circular path in a plane centered between the capacitor

plates.  There will be no real current enclosed only displacement current so

  

r 
B • d

r 
s = µo∫ εo

dΦe

dt
= µoid .

By symmetry the field will be constant along this path

⇒ B ⋅2πr = µoid ⇒ B =
µoid

2πr
= 3.33x10−8 T .

(e)When r = 1.00cm only part of the flux passes through the path.  Using Ampere's Law,

  

r 
B • d

r 
s = µo∫ ienclosed +µoεo

dΦe

dt
⇒ B ⋅2πr = µoεo

dE

dt
πr2 ⇒ B =

µoεor

2

dE

dt
= 2.50x10−8 T .

In summary, the laws of electricity and magnetism have a nice symmetry.  Just as changing magnetic
fields produce circulating electric fields, changing electric fields make circulating magnetic fields.

   6. Maxwell's Equations

We now know everything there is to know about the properties of the electric and magnetic fields.  This
knowledge is summarized by Maxwell's Equations,

Gauss's Law for Electricity
  

r 
E • d

r 
A ∫ =

q

εo
Charge creates diverging electric fields.

Faraday's Law of Induction
  

r 
E • d

r 
s ∫ = −

dΦB

dt
Changing B's create circulating E's.

Gauss's Law for Magnetism
  

r 
B • d

r 
A ∫ = 0 There are no magnetic monopoles.

Ampere's Law    
  

r 
B • d

r 
s = µo∫

dq

dt
+µ oεo

dΦe

dt
Currents or changing E's make circulating B's.
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    Example        4:     Suppose a magnetic monopole is found experimentally.  Fix Maxwell's Equations and

find the SI units of magnetic charge.

Gauss's Law for Magnetism must be fixed: 
  

r 
B • d

r 
A ∫ = µoqm .

Since flowing electric charge creates magnetic field, it is reasonable to assume that flowing

magnetic charge will create electric fields.  Therefor, Faraday's Law also needs to be amended:

  

r 
E • d

r 
s ∫ = µo

dqm

dt
−

dΦB

dt
.

Maxwell's Equations now exhibit a beautiful symmetry,

Gauss's Law for Electricity
  

r 
E • d

r 
A ∫ =

q

εo
electric charge creates electric fields

Faraday's Law of Induction
  

r 
E • d

r 
s ∫ = µo

dqm

dt
−

dΦB

dt
flowing magnetic charge or

changing B-fields create E-fields

Gauss's Law for Magnetism
  

r 
B • d

r 
A ∫ = µoqm magnetic charge creates magnetic fields

Ampere's Law
  

r 
B • d

r 
s = µo∫

dq

dt
+µ oεo

dΦe

dt
flowing electric charge or

changing E-fields create B-fields

The units of qm can be found from Gauss's Law for Magnetism:

  
qm[ ] =

B[ ] A[ ]
µo[ ] =

µoi

l
 
 

 
 

A[ ]

µo[ ] =
i[ ] A[ ]

l[ ]
= i[ ] l[ ] = A ⋅ m

    Chapter 32 - Summary

The Magnetic Moment of a Charge
  

r 
µ =

q

2m

r 
L 

The Definition of Magnetization 
  

r 
M ≡

r 
µ 

vol

Maxwell's Equations

Gauss's Law for Electricity
  

r 
E • d

r 
A ∫ =

q

εo

Faraday's Law of Induction
  

r 
E • d

r 
s ∫ = −

dΦB

dt
Gauss's Law for Magnetism

  
r 
B • d

r 
A ∫ = 0

Ampere's Law
  

r 
B • d

r 
s = µo∫

dq

dt
+µ oεo

dΦe

dt


