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The sinusoidally driven mass-spring sys-
tem exhibits a classic example of reso-
nance.  As the frequency of the driver

(�D) approaches the natural frequency of the
mass-spring system (�0), the amplitude of the
mass oscillations grows until it reaches a maxi-
mum when the two frequencies are equal.  While
the actual analysis of this situation using Newton’s
laws is somewhat complicated, most students are
reasonably comfortable with the conceptual ex-
planation: the response of the system is greatest
when you drive it at the frequency at which it nat-
urally oscillates.

Surprising Beats
During a summer internship at PASCO scien-

tific Corp., a student of ours (David Atkinson)

developed a high school laboratory exercise to il-
lustrate this resonance phenomena using just such
a mass-spring system.  During a presentation of
his experimental results for �D near but not equal
to �0, we noticed an interesting feature in the
motion: beats.  That is, the amplitude of the mass
oscillations was not constant in time, but varied
with a period much greater than the period of the
oscillations themselves (Fig. 1).  Since beats are
produced by the superposition of two nearly
equal frequencies, a quite reasonable guess for
these frequencies would be �D and �0.  While
providing an excellent demonstration of beats in a
mechanical system, is there really any more to be
said about this situation?  In fact, we were sur-
prised by the beats’ presence, since we initially re-
jected the possibility of the natural frequency be-
ing involved in their production. 

Why Be Surprised?
To understand why we were surprised, one

must examine the oscillator in more detail.1 For
an undamped, undriven oscillator with mass m
and spring constant k, Newton’s laws predict that
the position of the mass is given by

x1 = A sin (�0t), (1)

where �0 = �k�/�m�. An oscillator given a sud-
den, brief displacement from equilibrium, i.e.
given an initial “kick,” will subsequently oscillate
at �0.  However, any real oscillator has damping
that converts the mechanical energy to thermal
energy, thus causing the amplitude to decay over
time.  The Newtonian analysis is a little more
complicated in this case, but the results are not
surprising:

Beats in an Oscillator 
Near Resonance

Fig. 1.  Amplitude of the oscillations of a hanging
mass-spring system driven by an audio speaker. The
driving frequency is near resonance and the time is
measured since the last slight frequency adjust-
ment was made.
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x1 =  Ae-t/� sin (��t), (2)

where � is the time constant for the amplitude
decay and �� = ���0

2� –� (�1�/��)2�.  The exact form
of this solution assumes that the drag force is
directly proportional to the velocity of the mass,
but the general feature of decaying amplitude
will exist independent of the precise nature of
the drag.  The important point is that the natu-
ral oscillations essentially stop after a time inter-
val equal to several “decay constants”; hence, this
type of motion is known as the “transient solu-
tion.”

If one drives such an oscillator with a sinu-
soidal force, Newton’s laws predict that the mass
will oscillate at this driving frequency:

x2 =  D sin (�Dt + �). (3)

The resonance phenomena is expressed mathe-
matically in the fact that the amplitude D is a
function of the driving frequency:

D =  . (4)
F0 /m

���
���D

2� –���0
2�)2� –� (�2���D�/��)�2�

If the drag is small, then � is large which causes
D to peak sharply in the neighborhood of �0.
The motion described by Eq. (3) does not decay
over time and so is usually referred to as the
“steady state solution.”  The complete motion of
the mass is given by the sum x = x1 + x2.  Obvi-
ously only the steady state part of the motion
(x2) will contribute after several time constants
have elapsed.

We were surprised by the presence of the beats
because they were observed as David slowly ad-
justed �D toward resonance, more than one hour
after the driver was started and the system was
given its initial “kick.”  We surmised that the
transient oscillations at �0 would have been in-
significant by this time, and so were led to con-
clude that the second frequency beating against
the driving frequency must have arisen from some
subtler source.

Simplicity Over Subtlety
The first task was to build the system that pro-

duced the beats and experimentally investigate
more precisely what was occurring.  As shown in
Fig. 2, the system is quite basic: a mass is hung
from a spring whose other end is connected to a
small plastic hook glued to a 40-W speaker that is
driven by a high-stability PASCO function gener-
ator.  A PASCO ultrasonic motion detector moni-
tors the motion.  We were quickly able to confirm
that beats were present in the vertical oscillation
of the mass, and that they occurred for a small
range of frequencies about the resonance frequen-
cy.  In these measurements, our typical procedure
was to adjust the frequency about resonance only
after the oscillator had been driving the mass for
at least 30 minutes.  After observing beats at one
frequency, we would change the frequency by one
to three percent and observe beats at the new fre-
quency.  The beats shown in Fig. 1 were produced
by this procedure, the data being taken 12 min-
utes after a slight detuning from resonance:  
(�D – �0)/�0 = 0.03.

The reader may recognize in this procedure the
source of the “mysterious” beats.  While the beats
were observed long after the driver was started,
the changing of the frequency, even if only by a

Fig. 2. The mass-spring
system with PASCO func-
tion generator and motion
detector.
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few percent, constitutes a breaking of the purely
sinusoidal forcing function.  Such a change pro-
vides a “kick” to the system and thus causes the
reintroduction of the transient oscillations.  Com-
bining these gentle “kicks” with the quite large
decay time for these oscillations, � � 8 min, it is
quite easy to inadvertently produce seemingly
steady state beats. 

Since the beats are produced by the slight fre-
quency difference between the steady state �D

and the transient �0, they will disappear if the
mass-spring system is left undisturbed, but one
must wait more than 20 minutes for their extinc-
tion (Fig. 3).  Indeed, if one wishes to use this sys-
tem to map out the resonance curve, D(�D) ver-
sus �D, the time involved would be prohibitive in
a three-hour lab period.  However, it is a simple
matter to increase the drag by attaching a card-
board “air sail” to the bottom of the mass, thus
decreasing the time to reach steady state.

Fig. 3.  Mass-spring oscillations shown on an
expanded time scale. The slow damping of the
beats is evident over the 10 minutes shown. 
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