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ABSTRACT

A motion estimation algorithm is applied to image sequences produced by

a horizontally-scanning elastic backscatter lidar. The algorithm, a wavelet-

based optical flow estimator named Typhoon, produces dense two-component

vector flow fields that correspond to the apparent motion of microscale aerosol

features. To validate the efficacy of this approach for the remote measure-

ment of wind fields in the lower atmosphere, an experiment was conducted

in Chico, California, in 2013 and 2014. The flow fields, estimated every

17 s, were compared with measurements from an independent Doppler li-

dar. Time-series of wind speed and direction, statistical assessment of the

10-min averages and examples of wind fields are presented. The comparison

of 10-min averages at 100 m AGL reveals excellent correlations between esti-

mates from the Typhoon algorithm and measurements from the Doppler lidar.

Power spectra and spectral transfer functions are computed to characterize the

filtering effects of the algorithm in the spatial domain.
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1. Introduction23

Motion estimation is a branch in the field of computer vision that develops algorithms to deter-24

mine the apparent movement of objects in sequences of digital images. Since the seminal paper25

by Horn and Schunck (1981), the applications of these numerical methods have become numer-26

ous; they play key roles in the success of many modern technologies including bioinformatics,27

video compression and machine vision. These techniques are also commonly found in experimen-28

tal fluid dynamics, applied for example to particle image velocimetry (PIV) (Adrian 2005). In29

contrast to in-situ measurements which are inherently restricted to a single point of space, motion30

estimation methods are non-intrusive and provide fields or volumes of velocity vectors and thus31

offer a broader perspective of the flow.32

Because of the abundance of images in the atmospheric and oceanic sciences, motion estimation33

has been practiced since before the digital age. For example, determination of the movement of34

cloud features in satellite images was done prior to the work of Horn and Schunck (1981) through a35

block-matching approach (Leese et al. 1971). Modern applications involve for example the recov-36

ery of glacier velocities (Scambos et al. 1992), displacements resulting from landslides (Stumpf37

et al. 2013), surface water flows (Dugan et al. 2014) and breaking waves dynamics (Melville and38

Matusov 2002).39

Another application, similar to PIV, involves the estimation of 2D, 2-component wind field from40

the apparent motion in aerosol backscatter lidar data (Schols and Eloranta 1992). Thus far the41

motion estimation algorithms used in that context were variations of the cross-correlation method42

(Mayor et al. 2012; Hamada et al. 2015). In this paper, a more recent approach that was devised43

specifically for application to fluid motion is investigated. This algorithm, named Typhoon, is44

a wavelet-based optical flow estimator. It was previously validated with synthetic and real PIV45
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images (Dérian 2012). Here, as a first step, the validity of this wavelet-based optical flow approach46

in the context of atmospheric lidar data is demonstrated.47

The paper is organized as follows: Section 2 introduces the motion estimation framework for the48

wind measurement problem and the traditional cross-correlation algorithm. Section 3 presents the49

proposed Typhoon algorithm. The input aerosol backscatter lidar data is detailed in Section 4. Fi-50

nally, in Section 5, estimated wind fields are validated by comparisons with remote measurements51

from a commercial Doppler lidar. Power spectra and transfer functions are calculated to show the52

filtering effect of the proposed approach.53

2. Wind measurement and motion estimation54

a. Wind measurement strategies55

Air motion is represented by a three-component vector and may be defined at all points in the56

atmosphere. The wind is generally regarded as the vector consisting of two horizontal components.57

Active remote wind measurement techniques may be subdivided into Doppler and non-Doppler58

approaches.59

Ground-based radars and lidars typically collect data in a spherical coordinate system. Doppler60

radars and lidars directly measure only the radial (line-of-sight) component of air motion. For a61

Doppler radar or lidar to measure the wind, specific scanning strategies and assumptions about the62

air motion over space and time must be made. Wind profiling describes the use of a remote sensor63

to provide a vertical profile of horizontal wind vectors at a single location above the surface of the64

earth. Alternatively, two Doppler radars or lidars, separated by some horizontal distance, may be65

used to probe an area from different angles and obtain a two-component wind field. This approach66

is known as “dual-Doppler” (Stawiarski et al. 2013).67
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Non-Doppler approaches estimate wind fields from the spatial and temporal movement of fea-68

tures observed by the instrument. Eloranta et al. (1975) provided some of the first remote wind69

measurements by lidar in the lower atmosphere. Since that time, hardware and software has ad-70

vanced greatly and a small number of validation experiments have been conducted (Mayor et al.71

2012). Meanwhile, other fields, in particular experimental fluid dynamics, have developed similar72

approaches to retrieve motions. This concept is also known to the computer vision community,73

where it is associated with the wide family of motion estimation techniques.74

b. Fluid motion estimation: the vision approach75

The idea of using the apparent motion of tracers to infer the invisible underlying fluid flow is76

not new. It “could probably be traced far back in history to the first time a person possessing77

the concept of velocity watched small debris moving on the surface of a flowing stream” (Adrian78

2005). Many visualization methods have been developed, such as using droplets, dye, smoke or79

shadows for the purpose of revealing fluid flow structures and dynamics (Van Dyke 1982). This80

led in particular to the well-known PIV techniques, which have been used in experimental fluid81

dynamics for almost 30 years (Adrian 2005). Our 2D, 2-component wind measurement approach82

fits in the motion estimation context: the tracers are the aerosol features, visualized by the lidar83

system, and the motion estimation technique is usually the cross-correlation. This configuration84

is very comparable to PIV, with the important differences that the distribution of aerosols in the85

atmosphere (the “seeding” of the flow) cannot be controlled, and that the images are not of indi-86

vidual particles, but instead of a field that approximately represents particle concentration (Held87

et al. 2012).88
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c. Motion estimation framework89

Motion estimation aims to recover the apparent displacements within a sequence of images.90

The time and space variations of an observable image quantity are used to infer the underlying91

motion field occurring in the image plane between two consecutive frames of the sequence. In this92

work, input images are the scans provided by the lidar, the movements of the variations of aerosol93

backscatter intensity are used to estimate the wind field.94

In the following, the scan domain is noted as Ω ⊂ R2. The observable backscatter intensity is95

noted as In(x) at pixel x = (x1,x2) ∈Ω and at discrete time tn, n ∈ N. The apparent displacement96

between two consecutive scans In, In+1 is a 2D vector field u:97

u(x, tn) =

u1(x, tn)

u2(x, tn)

 .

This displacement is measured in pixel units and occurs over the time δ tn = tn+1− tn s. If the scan98

has a resolution of δx m pixel−1, an estimation of the instantaneous wind velocity v in m s−1 is99

therefore given by:100

v(x, tn) =
δx
δ tn

u(x, tn). (1)

As such, the motion is assumed to be stationary during the time step δt .101

Velocity components v1, v2 are the in-plane components, that is, they belong to the image plane.102

Due to the very low value of the elevation angle of the lidar scan plane (typically < 6◦), these103

components coincide with the horizontal wind components (usually denoted u, v in atmospheric104

sciences). The out-of plane component (normal to the scan plane), which remains unestimated,105

thus corresponds to the vertical component w.106

The question of the accuracy of motion estimation techniques is often raised. The answer is107

complex, since it involves the data characteristics (spatial, temporal resolutions), the information108
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given by the visualization method (the image content), and the underlying motion field itself. In109

the current context, the later contributions are difficult to quantify, as they depend largely on the110

conditions (e.g., the presence of particulate matter, the scales and variability of the wind field).111

However, assuming ideal conditions and a perfect model, errors related to the resolution of data112

may be quantified. If displacements are measured as integers on the image grid, the systematic113

error is ±0.5 pixel, which then gives ±0.5δx/δt m s−1 for each motion component. In practice,114

various interpolation techniques allow for sub-pixel estimation, reducing this error. The error can115

be also lowered by using a smaller δx and/or a larger δt . However, for a given motion field, a116

smaller δx results in larger apparent displacements, which can be more challenging for estima-117

tion algorithms. On the opposite, larger δt leads to less accurate perception of the instantaneous118

velocity, since the assumption of stationarity of the motion field is less valid over longer periods.119

Any motion estimation technique features two main aspects. The first one, known as the data120

model, describes the link between observations I (the aerosol backscatter intensity) and the under-121

lying unknown displacement u. This model should take into account the nature of observed data122

and its relevant dynamics. Then, as an inverse problem, motion estimation is usually ill-posed.123

The second aspect is therefore the regularization, which is required in order to close the estima-124

tion problem. The regularization may also provides information where the data model fails locally.125

The various estimation techniques feature different data models, regularizations or implementation126

strategies.127

d. The cross-correlation algorithm, concept and limitations128

The cross-correlation technique performs independent, local motion estimations on subregions129

(blocks) of the scan domain. It consists in correlating a block of the first scan In with a translated130

block of the second scan In+1; the translation vector u which induces a correlation peak is consid-131
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ered to be the displacement at the center of the block (Schols and Eloranta 1992). The estimation132

problem, presented in its basic form, is written as:133

∀x ∈ΩC,u(x, tn) = argmax
u ∑

y∈B(x)

[In+1(y+u)−µn+1(x+u)] [In(y)−µn(x)]
σ2

n+1(x+u)σ2
n (x)

, (2)

where ΩC ⊂Ω is the set of block centers (and therefore the set of locations of estimated vectors),134

B(x) is the block centered on x, µp(x) and σp(x) are the mean and standard deviation, respectively,135

of backscatter intensity Ip over block B(x). Note that in practice, this cross-correlation function136

(CCF) is computed using the FFT for computational efficiency.137

In this case, the data model is the CCF (2) itself; the regularization is implicitly given by the138

size of block B(x) which should be large enough to contain reliable information, yet as small as139

possible to resolve small scale motions. Typically, neighboring blocks overlap by 50%, so that the140

estimated motion field is sparse (fewer motion vectors than pixels). Each vector is the result of141

a single independent problem, which makes the CCF algorithm pleasingly parallel (Mauzey et al.142

2012). This cross-correlation approach and its numerous variants have become widely used in PIV143

(Adrian and Westerweel 2010); in geosciences it is often applied to satellite imagery to retrieve144

for instance glacier velocities (Scambos et al. 1992), and has given good results with aerosol145

backscatter lidar data, as shown in Schols and Eloranta (1992), Mayor and Eloranta (2001) and146

Mayor et al. (2012).147

However, this method as presented in (2) is not exempt from drawbacks. First, the displace-148

ment within an entire block B(x) is explained by a single vector u(x), which implies that this149

displacement is assumed to be uniform (constant) over the block. The larger the block, the less150

likely this assumption is to be true. Yet, as overly small blocks may result in uncertainties due to151

lack of information, “large” blocks are usually preferred. This leads to the second point: as dis-152

placements occurring within large blocks are likely not uniform, the estimated u(x) corresponds153
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to a power-weighted average of the apparent displacements within the corresponding block B(x)154

(Hamada 2014), which results in an over-smoothed motion field. To address these issues, this155

study proposes to evaluate a recently developed motion estimation algorithm dedicated to fluid156

flows.157

3. Typhoon algorithm158

Early attempts with a different class of motion estimation methods, often called optical flow,159

were conducted in 2010 on the CHATS1 dataset and led to promising results (Dérian et al. 2010).160

Since then the authors developed a new version of the algorithm based on a wavelet framework,161

named Typhoon. The extensive description of the algorithm is largely mathematical and details162

regarding the design of the data-model and the regularization can be found in Dérian et al. (2013)163

and Kadri Harouna et al. (2013), respectively. In the following, an overview of the method and the164

improvements made to achieve real-time wind estimation from aerosol backscatter lidar imagery165

are provided.166

a. Optical flow, from observations to motion167

The proposed approach has two major differences with respect to the cross-correlation algorithm168

presented above. First, this wavelet-based optical flow uses a global formulation: all vectors u(x)169

of the displacement field u are estimated simultaneously by solving a single problem, whereas170

the cross-correlation approach in (2) has as many independent problems as vectors u(x). Second,171

this method provides a dense estimate, that is to say one displacement vector at every point x172

of the scan domain Ω, whereas the CCF solution is usually sparse. The estimate is obtained by173

1Canopy Horizontal Array Turbulence Study, near Dixon, CA, 2007 – see Patton et al. (2011).
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minimizing a functional, similar to an energy, defined over the whole scan domain:174

u = argmin
u

{1
2

∫
Ω

[ fdata(I,u)]2 dx

+
α

2

∫
Ω

[ freg(u)]2 dx
}
.

(3)

fdata is the data model that depends on observations I and unknown displacement u, while the175

regularization freg depends on u only. The parameter α > 0 balances the two terms and is fixed by176

the user.177

The data model used in Typhoon is known as the displaced frame difference (DFD):178

In+1(x+u(x, tn)) = In(x) . (4)

It is analogous to finding the displacement field u that “warps” an image into the next one. This179

model assumes the consistency of backscatter intensity along the trajectory of an aerosol feature180

during the time interval [tn; tn+1], that is to say an aerosol feature will present the same intensity,181

the same “signature”, in both scans In, In+1. Therefore any phenomena inducing a significant182

change in intensity, such as turbulent diffusion or out-of-plane motion, can possibly lead to false183

apparent motions.2 Such phenomena are not uncommon, but it can be reasonably assumed that184

the time scales at which they act are significantly larger than the inter-scan time-step δ tn, so that185

the DFD (4) remains valid. It is also important to note that from formulation (3), the data model is186

not strictly enforced. Instead, the solution achieves a balance between trying to follow the model187

on one hand and the regularization on the other – hence the role of the parameter α , which allows188

the user to give more weight to one term over the other.189

Regularization schemes usually encourage the estimate u to follow some smoothness assump-190

tion. This work uses the most simple first-order regularization, originally introduced in Horn and191

Schunck (1981), which penalizes strong velocity gradients. For each displacement component ui,192

2False apparent motions refer here to illusory motions of aerosol features that do not correspond to the horizontal wind.
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i = 1,2:193

freg(ui) = |∇ui|=

√(
∂ui

∂x1

)2

+

(
∂ui

∂x2

)2

. (5)

Note that the square root is later cancelled by the square in (3). If the regularization is given much194

more weight than the data model (α → ∞ in (3)), the solution that minimizes (3) moves toward195

a uniform motion field (with ∇ui = 0 for i = 1,2). The regularizer also takes precedence over196

the data model locally where the latter is inefficient, for instance within uniform regions of the197

input images. Other regularizers are available in Typhoon, penalizing, for instance, the vorticity or198

divergence of the flow, or the gradient of vorticity, divergence; some of these schemes have proven199

to be very efficient with PIV and water vapor satellite images (Corpetti et al. 2002). However,200

as the complexity of the regularization increases, the associated computational costs increase,201

which may reduce the ability to achieve real-time estimation. Moreover, in the context of aerosol202

backscatter lidar images, little to no improvement brought by the use of these advanced schemes203

was found. This could be linked to the specificities of this lidar data, which will be detailed further204

in Section 4.205

The DFD model (4) and the Horn and Schunck regularizer (5) inserted into (3) complete the206

motion estimation problem:207

u(tn) = argmin
u

{
1
2

∫
Ω

[In+1(x+u(x, tn))− In(x)]2 dx

+
α

2

∫
Ω

∑
i=1,2
|∇ui(x, tn)|2 dx

}
.

(6)

A particularity of this problem is that the DFD model (4) is not linear in u, so that the whole func-208

tional is not quadratic. This complicates the minimization process, as the existence of a global209

minimum is not guaranteed. This is another role for the regularization term: it convexifies the210

functional as α → ∞. But, as large α values are unmanageable, to ensure a successful mini-211
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mization it is important for the solution u to lie “close” to the first guess.3 This calls for the use212

of an incremental strategy, often known as “multi-resolution”: the displacement field is estimated213

following a coarse-to-fine process, starting with coarse structures of large amplitudes, and progres-214

sively refining toward smaller scales. This last point motivates the use of the wavelet framework.215

b. Introduction to the wavelet framework216

In signal processing, the spectral space is often used to analyze or exhibit some properties of a217

given signal. The FFT leads to a representation in terms of sine and cosine functions of specific218

frequencies. Any spatial information is lost in the process: the Fourier coefficients, which form219

an equivalent representation of the input signal, yield no information as to where their associated220

frequency is or is not present. This is due to the fact that the sine and cosine functions, which form221

the basis of the spectral space, are very well localized in frequency but have an infinite support in222

space. Conversely, looking at the signal in the physical space does not give any information on the223

frequency content. The wavelet formalism offers a trade-off: the wavelet functions are localized224

both in space and frequency, thus they enable access to information on the frequency content and225

the spatial location simultaneously – at the cost of lower precision. A wavelet representation of226

a given signal consists of a coarse approximation of the signal, along with several sets of details227

containing spatially-localized information at various ranges of frequencies. Note that instead of228

frequency, the wavelet formalism prefers the equivalent but reciprocal notion of scale.229

This multi-scale (or, multi-resolution) representation offered by the wavelet transform is the230

main motivation to adopt wavelet bases for displacement components u1, u2. It leads to a “natu-231

ral” coarse-to-fine strategy suitable to motion estimation (Dérian et al. 2013). Approximation and232

coarse detail coefficients are estimated first, then fine-scale details are successively added until233

3which is usually the null motion field, u(x) = 0 ∀x ∈Ω.
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the smallest scale is reached. Besides the multi-scale framework, wavelet bases also allow the234

representation of arbitrary regular functions (a fluid motion field should at least be continuous).235

Finally, regularization schemes presented in Section 3.a find a relatively simple yet very accurate236

implementation in that context (Kadri Harouna et al. 2013). Similarly to the Fourier transform,237

the wavelet transform is a linear, separable4 operator, with fast algorithms (fast wavelet transform,238

FWT) for computational efficiency. Wavelets are also used in many fields, from signal denois-239

ing to video compression; Mallat (2008) discusses an extensive presentation of the theory and240

applications.241

Conceptually, the use of wavelet bases does not lead to significant changes to the estimation242

problem (6). Each motion component ui is expressed as the inverse transform (reconstruction) of243

its corresponding wavelet coefficients ci:244

ui =Winv(ci) , i = 1,2 ,

where Winv denotes the inverse wavelet transform. The set of wavelet coefficients {c1,c2} thus is245

the unknown to the estimation problem.246

c. Recent improvements247

The original algorithm detailed in Dérian et al. (2013) would accept square images only. If248

input images were rectangular, they had to be padded to turn them square, which increases the249

computational burden. The current version has been modified to accept rectangular images.250

The main improvement is the result of redesigning the code to run in “real-time”. To keep up251

with real-time, the estimate of wind field v(tn) from scans In, In+1 must be complete by the time252

the next scan In+2 is made available, with the inter-scan time-step δ tn typically on the order of253

10 to 20 seconds. Since the whole motion field is estimated simultaneously, the number of vari-254

4The 2D transform is obtained by combining two 1D transform, first along rows then along columns.
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ables is quite large: a dense estimate from 512×512 pixel images represents about half a million255

unknowns. Wavelet transforms lie at the core of the estimation process. Each evaluation of the256

functional (6) requires two inverse FWTs (to reconstruct the displacement u from its coefficients)257

and two forward FWTs (to compute the gradient). In order to achieve the necessary reduction in258

computation time, the low-level functions of the algorithm – in particular, the wavelet transforms259

– were rewritten in CUDA language, which enables it to execute on NVIDIA’s graphic processing260

units (GPU). GPUs designed for scientific computing rely on several thousands of small com-261

puting units, thus providing massive parallelization capabilities. The CUDA version of Typhoon262

running on an NVIDIA GeForce GTX Titan is 10 to 100 times faster than the original version263

(Mauzey et al. 2014), and is sufficient to meet the real-time requirements.264

4. Application to aerosol backscatter data265

The results presented hereafter have been obtained from data collected by the Raman-shifted266

Eye-safe Aerosol Lidar (REAL) (Mayor and Spuler 2004; Spuler and Mayor 2005; Mayor et al.267

2007; Spuler and Mayor 2005) in 2013 and 2014 in Chico, California. This section describes the268

input data as well as the preprocessing steps.269

a. Data preprocessing270

Before motion estimation takes place, the raw signal delivered by the REAL must be prepro-271

cessed. Lidar data is sampled on a polar grid, with the lidar at the origin. Each scan is composed272

of shots, with a shot being a 1D array of backscatter samples, uniformly spaced along the range r273

every 1.5 m, collected at a given angular position θ from a single laser pulse.274
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The raw backscatter intensity Iraw(r,θ), with the range r and the azimuth angle θ , corresponds275

to the actual backscatter signal β (r,θ) and an additive noise ε(r,θ).276

Iraw(r,θ) = β (r,θ)+ ε(r,θ) .

The noise ε combines contributions from the atmosphere and the instrument and can be modeled277

by a random variable which follows a normal distribution of mean µθ and standard deviation σθ .278

Values of µθ , σθ change slightly from one shot to another, hence their dependency in θ ; they can279

be estimated for each shot from background data. As explained in Mayor et al. (2012), first the280

noise mean is subtracted:281

I0(r,θ) = Iraw(r,θ)−µθ = β (r,θ)+ ε0(r,θ) ,

with ε0(r,θ) = ε(r,θ)−µθ the now centered random noise. The raw signal-to-noise ratio (SNR)282

is computed at that point:283

SNRraw(r,θ) =
I0(r,θ)

σθ

. (7)

Shots are then multiplied by the square of the range to compensate for the one-over-range-squared284

decay of the backscatter β :285

Ir2(r,θ) = r2I0(r,θ) = r2
β (r,θ)+ r2

ε0(θ) .

Note that the noise amplitude now increases as the square of the range. For optimal results, it is286

then essential to discard irrelevant noisy data, which is discussed further.287

After conversion to decibels, shots are filtered in the range dimension. The low-pass median288

filter of length 7 points (10.5 m) removes high-intensity spikes typically caused by hard-targets289

such as birds and insects, while the high-pass median filter of length 333 points (500 m) removes290

the very large structures to reveal local fluctuations. Figure 1 presents an example of preprocessed291

backscatter data (panel a), along with the corresponding raw SNR (7) (panel b).292
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b. Detecting coherent features293

Two different aspects complicate the motion estimation process. First, due to the nature of294

backscatter data, the raw SNR (7) decays as one-over-range-squared. Typically, for the REAL295

operating in Chico, CA, the SNR resulting from a single laser pulse drops below 5 at r = 3 km.296

Such high levels of noise in the far range are challenging for optical flow. Second, for the purpose297

of motion estimation, a good SNR in the near range does not necessarily imply useful information.298

For instance, coherent features can be absent from a region of the scan, yielding much uncertainties299

as to the underlying wind field in that region.300

In order to maximize the quality of the results, the scan areas presenting no coherent aerosol fea-301

tures are discarded. Because of the regularization schemes provided by optical flow (Section 3.a),302

wind vectors estimated over noisy areas could be relevant. However judging so proves to be diffi-303

cult, as often even a basic visual confirmation is impossible in noisy regions. Hence, it is safer to304

simply discard the noisy image data before motion estimation.305

To detect the presence of coherent aerosol features, the image SNR is used. It is defined as the306

ratio of the local standard deviation of coherent signal σβ (r,θ) to the local standard deviation of307

noise σε :308

SNRimg(r,θ) =
σβ (r,θ)
σε(r,θ)

. (8)

This ratio is estimated from the autocovariance function of preprocessed data I(r,θ). For every309

point (r,θ), the autocovariance Cl is computed along the range from data in [r− l/2;r + l/2].310

Then, the local variance of coherent signal is given by the average of coefficients at lag 1 and -1:311

(σβ )
2 = 0.5(Cl(−1)+Cl(1)) ,

while the local variance of noise is obtained from the 0-lag coefficient and σβ :312

(σε)
2 =Cl(0)− (σβ )

2 .
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An example of image SNR is shown in Fig. 1 panel c. A 256-point window was used to compute313

the autocovariance, corresponding to l = 384 m.314

From the image SNR, a valid data domain is computed for each scan. It is assumed that the best315

data is in the near range, therefore the valid domain is simply defined by a far-range boundary. For316

each shot (azimuth θ ), this far-range boundary is given by the smallest range R(θ) above which317

the image SNR remains below a threshold τ fixed by the user:318

∀θ , R(θ) = min
R

{
R : ∀r > R, SNRimg(r,θ)< τ

}
. (9)

Finally, a low-pass median filter of width 25 points and a Gaussian filter of parameter σ = 2319

points are applied to the set of R(θ), to exclude small isolated features and smooth the boundary.320

An example of mask representing the valid data domain is shown in Fig. 1 panel d, using τ = 3.321

c. Correction of image distortions322

A lidar scan does not correspond to an instantaneous view of the aerosol distribution. The shots323

which the scan is composed of are acquired sequentially. In the event of high wind speeds, this324

leads to apparent distortions of the aerosol features in the lidar images, which in turn causes the325

estimation motion to be biased. This issue was first noted by Sasano et al. (1982) who proposed an326

iterative correction method. Assuming that the aerosol features are transported without deforma-327

tion by a uniform wind vector, scans can be warped to reconstruct an approximated instantaneous328

view of the aerosols, thus improving the accuracy of motion estimation. In this study, implemen-329

tation proceeds as follows for a given scan pair:330

i. Estimate the displacement field u from the pair of scans with the Typhoon algorithm.331

ii. Convert to velocity field v using (1).332
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iii. Correct both scans for distortions using wind field v, following Sasano et al. (1982). The time333

of the beam at the center of the scan is used as the reference time.334

iv. Repeat i–iii until mean wind speed |v̄| changes by either less than 1%, or less than 0.25δx/δ t.335

Typically, it requires 2-3 iterations.336

The correction step (iii) is carried on the polar grid data. After correction, backscatter data is no337

longer known on a regular polar grid, but instead is at scattered locations.338

d. Cartesian gridding339

After preprocessing, masking and correction for distortions, the backscatter data is interpolated340

on a Cartesian grid of spacing δx = 8 m. It is possible to perform the motion estimation directly341

on the original polar grid, however, as mentioned above, the correction step destroys the regularity342

of the mesh. Fast interpolation on large sets of scattered data can be challenging, considering343

real-time requirements. In this work, a CUDA implementation of nearest-neighbor interpolation344

was used.345

5. Validation346

A field experiment was conducted in Chico, CA, from mid-September 2013 to mid-January347

2014, to validate the wind fields recovered by Typhoon. A Doppler lidar (DL) was deployed to348

provide independent wind measurements. It is a pulsed, heterodyne detection Doppler lidar com-349

mercialized by HALO Photonics under the name Streamline (Pearson et al. 2009). The DL was350

previously certified against cup anemometer measurements (G. Pearson 2014, personal commu-351

nication). DL data was filtered following the manufacturer’s indications, keeping only points for352

which the minimum SNR intensity > 1.01.353
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Since it is not possible to retrieve a 2D 2-component wind field using a single DL, two different354

configurations were investigated.355

• Temporal validation. The DL was located at 1500 m range, 15◦ azimuth from the REAL356

and operated in vertical profiling mode. Data from this configuration enable comparisons of357

time-series of 2-component wind velocities at the DL location. This phase of the experiment358

was conducted during September and October 2013.359

• Spatial validation. The DL was located on the roof of the REAL container and operated360

in fixed-beam mode, staring at the center of the sector scan area swept by the REAL. This361

configuration enables one to compare radial wind velocity components along the DL line-of-362

sight. Data for this second phase of the experiment were collected in December 2013 and363

January 2014.364

The main parameters used by both systems during these two experiments are summarized in Ta-365

ble 1.366

a. Temporal validation367

In this experiment, the REAL scans between -15◦ and 45◦ azimuth, with a 4◦ elevation, every368

17 s. This places the scan at 100 m AGL at the range of the DL. The DL operates in vertical369

profiling mode (VAD scan), providing a profile of 2-component horizontal wind vector about370

every 15 s.371

A typical example of aerosol motion estimation is presented in Fig. 2. It features a close-up of372

two motion fields estimated from three successive position plan indicator (PPI) scans. The flow is373

relatively uniform, and can be visually identified due to a large aerosol feature that moves toward374
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the southeast. The DL wind vectors at 100 m AGL are displayed for comparison and show a good375

agreement with the Typhoon estimates.376

In this paper, an effort is made to establish the potential of the Typhoon algorithm when applied377

to aerosol backscatter lidar data. However, quality of the data depends upon the performance of378

the instrument and the state of the atmosphere. Therefore, we selected the days presenting the379

best potential for this validation among data collected in Chico, CA from mid-September to mid-380

November 2013, with the expectation that future advances in hardware will lead to increases in381

data quality and availability. First, due to the local typical conditions in Chico, aerosol backscatter382

imagery is much better for this application during the daytime than during nighttime. There-383

fore, this study was restricted to daytime only. Second, the percentage of valid backscatter data384

(Sec. 4.b), during daytime, in a 50 m radius around the DL were computed. These values are385

plotted against the mean wind speed measured by the DL the same day in Fig. 3. With a suffi-386

cient spatial distribution of aerosol features, dense 2-component wind fields can be delivered up to387

several km in range. Figure 4 shows an example of such wind field on a day with high speed and388

uniform direction, with vectors available out to 4 km range. The low-SNR area in the far-range389

were dynamically excluded. Figure 5 presents a view of a ≈ 200 m vortex, illustrating the ability390

of Typhoon to extract coherent structures at intermediate scales.391

Three specific cases are described below: light, moderate and strong wind conditions. These392

days are represented by solid diamonds in Fig. 3. For each case, time-series of instantaneous and393

10-min averaged wind measurements are presented. 10-min averages are the reference measures394

for instrument validation in the wind power industry (Bailey 2012). Then, statistics on 10-min395

averages for the 15 days having more than 85% valid data are presented.396

The VAD scan strategy used by the DL assumes that the wind is uniform throughout the swept397

area (Mann et al. 2009, 2010; Sathe et al. 2011; Sathe and Mann 2012); in this case this region is a398
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disc of about 100 m radius, represented by a turquoise circle in Figs. 4 and 5. In order to compare399

results of the study to the DL measures, instantaneous Typhoon estimates are averaged in space400

over a similar sized area centered on the DL location.401

Occasionally, the estimation may fail and result in obvious outliers. Those outliers can be de-402

tected and removed under the assumption of temporal coherence of the wind field. The normalized403

median test, commonly used in PIV (Adrian and Westerweel 2010), was implemented. Similar404

concepts are used with radar wind profilers (Weber et al. 1993). Within each 10-min window, the405

median wind vector vm is computed, as well as the residuals r(v) = |vm−v| for each vector v of406

the window. Vectors for which the residual r(v) is twice larger than the median of residuals rm are407

discarded.408

1) LIGHT WIND CASE409

Figure 6 shows wind speed and direction measured by the DL at 100 m AGL and estimated410

by Typhoon for a 12-hour period starting on October 23 at 15:00 UTC. It is a light wind episode411

with speeds remaining below 3 m s−1 and variable direction. Estimates are missing over a pe-412

riod approximatively covering 15:00 to 17:00 UTC. This is due to the coherent feature detection413

presented in Sec. 4.b: no significant features were present in the region of interest at that time,414

therefore no motion estimates are available. Then, between 17:00 and 18:00 UTC, Typhoon speed415

and direction estimates are in systematic error. Visual inspection of the aerosol imagery reveals416

the mixed layer growing with the entrainment zone passing through the altitude of the intercom-417

parison. It appears that the plumes and wind shear in the entrainment zone result in false apparent418

motions that bias the motion estimations. Later, two reversals of wind direction occurred at 22:30419

and 23:30 UTC that correspond to the passage of a vortex of diameter ≈ 200 m over the region420

of interest (see also Fig. 5 for a spatial visualization). This microscale circulation resembles those421
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that have resulted from large eddy simulation of convective boundary layers (Schmidt and Schu-422

mann 1989; Kanak 2005; Sullivan and Patton 2011). Correlation coefficients R2 for the 10-min423

averaged wind components are 0.951 and 0.600 for u and v, respectively. Excluding the 17:00 –424

18:00 UTC period with false apparent motions, R2 values increase to 0.966 and 0.866.425

2) MODERATE WIND CASE426

Figure 7 shows wind speed and direction measured by the DL at 100 m AGL and estimated427

by Typhoon for a 12-hour period starting on September 17 at 15:00 UTC. This wind episode fea-428

tures speeds ranging 0 to 10 m s−1 and direction mostly stationary except for a 2-hour fluctuating429

episode (corresponding to the lowest wind speeds). Wind speed is underestimated at two occa-430

sions, both corresponding to rapid and large changes in direction around 22:30 and 23:00 UTC.431

Otherwise, both series of data are in very good agreement. This is confirmed by the 10-min aver-432

aged wind components: correlation coefficients R2 are 0.979 and 0.991 for u and v, respectively.433

3) STRONG WIND CASE434

Figure 8 shows wind speed and direction measured by the DL at 100 m AGL and estimated435

by Typhoon for a 12-hour period starting on October 9 at 15:00 UTC. It is a strong wind episode436

with speeds up to 16 m s−1 and very consistent flow from the northwest direction. Both time-437

series are again in very good agreement. Correlation coefficients R2 for the 10-min averaged wind438

components are 0.984 and 0.929 for u and v, respectively.439

4) OVERALL CONSIDERATIONS440

Scatter plots of 10-min averaged wind components measured during the daytime5 for the 15441

“best” days (Fig. 3) are presented in Fig. 9. They show an overall excellent agreement of Typhoon442

5“Daytime” is arbitrarily considered to be 15:00 – 01:00 UTC (10 hours).
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estimates with DL measurements at 100 m AGL: correlation coefficients R2 are 0.995 and 0.997443

for u and v, respectively. Detailed statistics on u and v are available in Tables 2 and 3. In terms of444

wind speed, a linear regression gives a slope of 1.000 with an offset of -0.10 m s−1, R2 coefficient is445

0.991. Regarding the wind direction, the offset is 1.1◦ and R2 coefficient is 0.944.6 This≈ 1◦ offset446

observed for the direction corresponds to the precision at which the DL was oriented during its447

deployment. The standard deviations (std) of observed differences is 0.29 m s−1 on both on u and448

v components. This is slightly higher than the expected systematic error of 0.5δx/δt ≈ 0.24 m s−1
449

which assumes perfect data and model (Sec. 2.c). The few remaining outliers mostly correspond450

to false apparent motions, typically occurring at the beginning and end of the day as the boundary451

layer depth evolves.452

From the time-series shown in Figs. 6, 7 and 8, it appears the variability of the wind speed453

obtained by Typhoon is less than that measured by the Doppler. Figure 10 is a scatter plot of454

turbulent kinetic energy (TKE) as measured by the Doppler and Typhoon over 10-min intervals.455

A linear regression suggests that the TKE from Typhoon is about 50% smaller than the Doppler’s.456

This could be linked to the fact that Typhoon measures apparent displacements, which are later457

converted to velocities (Sec. 2.c). Small-scales velocity structures, either in time or space, are458

less accurately perceived. Using a faster scan rate is likely to improve the results. Nevertheless,459

Typhoon performs better than the cross-correlation technique: the optimized algorithm presented460

in Hamada et al. (2015) recovers 39% of the TKE on the same dataset.461

6When dealing with circular data such as angles, the slope for the linear regression should be fixed to 1. The offset and R2 only are computed,

see e.g. Fisher (1995).
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b. Spatial validation462

During this phase of the experiment, the DL was colocated with the REAL. The REAL swept463

between 15◦ and 75◦ azimuth at 2◦ elevation every 17 s. The DL held its beam fixed at 45◦ azimuth464

and 2◦ elevation, measuring the radial velocity component as a function of range and time. DL465

measurements were integrated over one second, with a range gate of 48 m. The temporal resolution466

of DL measurements is therefore much finer than that of the REAL flow fields, and conversely for467

the spatial resolution (see Table 1).468

Instead of holding the DL beam fixed, a PPI sweeping strategy identical to the REAL’s could469

have been used, thus allowing the comparison of radial components over the whole scan domain.470

However, two arguments support the choice of a fixed beam:471

• With a moving beam set-up, the integration time for DL measurements was reduced to less472

than 0.1 s. This would cause the SNR to decrease very rapidly. Typically in Chico the473

maximum range with useful data would be on the order of 1500 m, significantly below that474

of the REAL’s.475

• The radial velocity fields collected by the DL would suffer from the same distortions as the476

backscatter data (Section 4.c), so correcting these distortions would be challenging.477

The data used for the spatial validation were recorded in December 2013 and January 2014. In478

Chico, CA, the days are shorter and the air is cleaner during this season than in the autumn when479

time-series data were collected. Both the DL and the REAL are affected. Data are of lower quality480

than shown for the temporal validation. The availability of 10-min averages falls below 50% after481

3 km for both instruments and at 5 km it is below 5%. Therefore, the analysis is restricted to the482

first 3 km. Furthermore, it should be noted that the prevailing wind direction during this time over483

Chico, CA is northwesterly. At 45◦ azimuth, the line-of-sight component corresponds mostly to484
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the cross-stream, turbulent wind perturbations. In these data, its magnitude remains mostly below485

3 m s−1. Figure 12 shows a comparison of radial velocity measured by the DL and extracted from486

the 2-component fields obtained by Typhoon for a 8-hour period starting 8 January 2014 at 17:00487

UTC.488

In order to compute statistics, radial velocities were averaged. First, spatial resolution are489

matched by averaging Typhoon velocities in space according to DL range gates, then 10-min time-490

averages are computed at every range. A scatter plot of these 10-min averages is presented in491

Fig. 13, along with linear regression slopes, R2 coefficient and distribution of differences. These492

values were obtained from 8-hour periods (17:00 to 01:00 UTC) for 8 days of December 2013 and493

January 2014. The R2 coefficient (panel d) decreases with the range and this is expected as both494

instruments are affected by the gradual reduction in SNR. R2 remains above 0.95 over the first495

1.5 km, then slowly decreases to about 0.8 at 3 km. The overall R2 is 0.928. While the relation496

between Typhoon and DL velocities remains linear, the slope (panel c) increases with the range,497

from about 0.95 at 0.5 km to 1.3 at 3 km. Velocities obtained by the cross-correlation method498

show a similar trend (Hamada et al. 2015). This leads to a theory that these discrepancies are due499

to a mismatch in the actual elevation angles of the beams during this phase of the experiment,500

especially considering the unbiased results of the temporal validation. At a lower elevation angle501

and therefore lower altitude, the DL would measure lower velocities.502

c. Spectral analysis503

In this section, temporal and spatial power spectra of the velocity components produced by504

Typhoon are presented, with the objective of characterizing the filtering effect of the algorithm –505

in particular, in the spatial domain. The velocity data analyzed were collected during the daytime506

25



and within the turbulent lower atmospheric boundary layer.7 Therefore, an inertial subrange in the507

power spectra of the actual velocity field is expected.508

The spectra are computed in natural coordinates to account for the anisotropy of atmospheric509

boundary layer turbulence, The west-east and south-north wind velocity components are projected,510

according to the mean wind direction, as streamwise (us) and cross-stream (vn) components, such511

that us carries the mean speed and vn has a null mean. The mean wind vector is defined accordingly512

to the investigated dimension, either in time or space. The spectra are finally averaged together513

according to the mean wind speed, using bins of 0–4 m s−1, 4–8 m s−1, 8–12 m s−1 and 12–514

16 m s−1, in order to exibit their evolution with increasing wind speed and turbulent kinetic energy.515

The resulting power spectral densities (S) are multiplied by frequency ( f ) or wavenumber squared516

(κ2) so that an inertial subrange would appear as a −2/3 slope and white noise would appear as517

+1 slope.518

1) TEMPORAL POWER SPECTRA519

During the experiment, the REAL collected PPI scans every 17 s and one RHI scan every 15 min.520

The RHI scan resulted in an 30 s interruption of the PPI scan sequence. The scan strategy of the521

DL provided vertical profiles of horizontal winds every 15±1 s. Since the FFT requires data522

points at a uniform time interval, the Typhoon and DL wind measurements were interpolated to523

a 5 s time series. From the 5 s time series data, we computed power spectra over consecutive524

10 min intervals. The 10-min mean wind vector was used for the projection in natural coordinates525

and the binning of spectra, as defined above. The resulting spectra have a Nyquist frequency of526

0.029 Hz (34 s period) for the Typhoon velocities and 0.033 Hz (30 s period) for the DL. The527

lowest frequency is 1.67×10−3 Hz (10 min period).528

7RHI scans collected every 15 min by the REAL during the 15 days included in the analysis show that the maximum convective boundary layer

height, that typically occurred in the afternoon, ranged from 300–1200 m AGL.
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The spectra are presented in Fig. 14. Those from the Doppler lidar are consistently higher than529

the spectra from Typhoon, this is consistent with our observation that the TKE measured from530

Doppler velocities are larger than those from Typhoon (Fig. 10). The temporal spectra appear to531

become flatter as the mean wind speed increases. We hypothesize that this may be caused by the532

challenges that both Typhoon and the DL face under windy conditions. For the DL, increased533

variability of the actual wind velocity field in the VAD sample area results in more error in the534

horizontal wind vector estimate. The increased error appear as noise at these time scales and535

flatten the spectrum. For Typhoon, windy conditions result in larger horizontal displacements536

between scans and faster deformation of aerosol coherent structures.537

2) SPATIAL POWER SPECTRA538

An independent observation of the 2-component 2-D velocity field does not exist for comparison539

with those produced by Typhoon. A dual-Doppler lidar set up could have provided it, but would540

have doubled the cost and complexity of the project. Therefore, to investigate the integrity of the541

vector flow fields in space, spatial power spectra are considered.542

A 1 km diameter circular area is considered, centered on the DL at 1.53 km range. All of the543

vectors within this area (from a single flow field in time) are used to compute the spatial mean wind544

vector, which then define a natural coordinate system. Vectors of the flow field are interpolated on545

a 128×128 point grid (1024 m × 1024 m) that is centered on the DL and aligned with the natural546

coordinate system, and then projected as streamwise (us) and cross-stream (vn) components. This547

operation was performed for each flow field independently and resulted in 30092 flows fields over548

15 days. At 4◦ elevation, the 1024 m × 1024 m area covers a range of altitudes from about 50 m549

to 150 m AGL. A possible impact of this is that the turbulence statistics within this sloped domain550

are slightly inhomogeneous. Nevertheless, for each component us, vn, the 2D power spectral551
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densities computed by FFT for each flow field are averaged together according to the mean spatial552

wind speed. Finally, slices of the resulting 2D power spectra were extracted along the streamwise553

and cross-stream directions. This results in four 1D spectra for each wind speed bin: along the554

streamwise and cross-stream directions, for each of the streamwise and cross-stream components.555

The Nyquist wavenumber is κ/2π = 0.0625 m−1 (16 m wavelength), the lowest wavenumber is556

9.77×10−4 m−1 (1204 m).557

The spectra in the top row of Fig. 15 show the TKE increasing as expected as function of wind558

speed. Each spectrum has a maximum amplitude at low wavenumbers. We hypothesize that the559

peak corresponds to one over the Eularian length scale, and is within the energy containing range560

(Kaimal and Finnigan 1994). However, the spectra are steeper than κ−2/3. We attribute this to561

two factors. First is the likely absence of aerosol features at all scales and all locations in the scan562

area at all times. Second is the regularization used in Typhoon which favors a smooth motion field,563

especially as the estimation reaches the smallest scales.564

A transfer function describes the ratio of two spectra and, in the present work, represents the565

attenuation of the actual wind field caused by the motion estimation as a function of wavenumber.566

A highly idealized spectrum is constructed to serve as the reference. This is done by first locating567

the maximum of each mean spatial spectra shown in Fig. 15. We assume that the observed power568

at wavenumbers smaller than the peak in the spectra are accurately captured by the algorithm and569

serve as a proper approximation of the power at those large scales. For scales smaller than the570

peak, we extrapolate by a power-law dependence through the higher wavenumbers that mimics571

the inertial subrange (a κ−2/3 spectrum). The transfer functions are then given by the ratio of the572

observed mean spectra over the idealized spectrum, and presented in the bottom row of Fig. 15.573

The higher the wind speed, the more energy is missing at small scales. The ratio typically drops574
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below 50% at scales of ≈100 m (κ/2π ≈ 0.01 m−1) for the highest wind speeds, and ≈75 m for575

the lowest.576

6. Broader perspectives and conclusions577

In a recent paper, entitled Review of turbulence measurements using ground-based wind lidars,578

Sathe and Mann (2013) conclude that “Non-coherent detection may also provide possible new579

ways to estimate atmospheric turbulence, but to our knowledge it does not, so far, challenge the580

capabilities of coherent Doppler lidars.” In this paper, we have (1) introduced a new motion581

estimation method; (2) made the first direct comparisons of the “non-Doppler motion estimation582

approach” with Doppler lidar; and (3) computed transfer functions to estimate the filtering effect583

of the approach. The new motion estimation method resolves finer spatial scale flow details than584

the traditional cross-correlation algorithm (Hamada et al. 2015). The comparisons in the time585

domain reveal excellent correlation in terms of 10-min averages, close for example to standards586

expected of commercial floating lidars (Carbon Trust 2013). However, the proposed approach still587

underestimates the TKE by about 50% of what is observed by Doppler lidar. It is important to588

keep in mind that the Doppler also provides a filtered version of the actual flow field.589

Two horizontal components are required for wind speed and direction. The proposed approach590

delivers dense 2-component wind fields from a single lidar, whereas a single Doppler only pro-591

duces a single component. In addition to wind resource assessment, wind fields such as delivered592

by Typhoon from REAL imagery enable the visualization and investigation of meteorological phe-593

nomena such as vortices and fronts. They also open the possibility of studies in the Lagrangian594

reference frame, and the tracking of flow structures or aerosol features.595
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APPENDIX A599

Mathematical Symbols600

• ∀ for all;601

• ⊂ subset of;602

• ∈ in (belonging to);603

• N, R the sets of natural and real numbers, respectively.604

APPENDIX B605

Parameters of Typhoon606

Unless specified, results were obtained using the following parameters for Typhoon:607

• version: cuTyphoon 1.0;608

• wavelet basis: Daubechies, 10 vanishing moments;609

• wavelet scales: 8 details scales considered and estimated;610

• pyramid steps=1, scaling factor=50%;611

• data model: DFD, smoothing kernel σ = 0.5;612

• regularization: Horn & Schunk, α = 0.05;613

• data range: [−0.5,0.5], with normalization, without histogram matching.614
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TABLE 1. Main parameters of DL and REAL measurements for the temporal and spatial validation experiments.

Temporal validation Spatial validation

Doppler REAL Doppler REAL

scan type VAD PPI STARE PPI

azimuth (◦) – [−15;45] 45 [15;75]

elevation (◦) – 4 2 2

range (km) – [0.5;5.5] [0;5] [0.5;5.5]

components 2 2 1 2

δx (m) – 8 48 8

δ t (s) 15 ±1 17 1 17
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TABLE 2. Standard deviation of differences, linear regression variables (slope, offset), correlation coefficient

R2, number of points and recovery percentage w.r.t. DL reference for the 10-min averaged wind component u

(west-east), for the temporal validation results (Sec. 5.a).

722

723

724

case std dev (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.17 1.047 -0.01 0.951 61 84.7

moderate 0.29 0.974 -0.05 0.979 72 100

strong 0.33 0.938 0.32 0.984 72 100

15 days 0.29 0.989 -0.03 0.995 892 99.1
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TABLE 3. Std dev of differences, linear regression variables (slope, offset), correlation coefficient R2, number

of points and recovery percentage w.r.t. DL reference for the 10-min averaged wind component v (south-north),

for the temporal validation results (Sec. 5.a).

725

726

727

case std dev (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.25 0.660 -0.02 0.600 61 84.7

moderate 0.23 0.999 0.00 0.991 72 100

strong 0.34 0.897 -0.72 0.929 72 100

15 days 0.29 1.001 0.03 0.997 892 99.1
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FIG. 1. Example of preprocessing applied to a horizontal scan collected on 3 October 2013 at 23:14:10 UTC.

Panel (a) is the preprocessed backscatter data. Panel (b) is the raw SNR (7), revealing a 1/r2 decay. Panel (c) is

the image SNR (8) computed using a 384 m window. Panel (d) is the valid data domain computed from image

SNR. Motion is estimated in the white area only, excluding far-range noisy regions. The far-range boundary (9)

of this area is also shown in (a) as a white line. Resulting, decimated vector flow field has been added to the

valid area in (d).
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FIG. 2. Illustration of the experimental design for the temporal validation of motion estimation vectors. Panel

(a) is a short sequence of 3 consecutive PPI scans collected on 14 October 2013 by the REAL. The displayed

area is a close-up centered on the Doppler lidar (white marker) used for validation. The copper shading indicates

the intensity, in dB, of aerosol backscatter. A large aerosol feature is being advected south-east and passes over

the DL. Panel (b), and (c) show the velocity fields estimated by Typhoon (black arrows) from each pair of scans;

they were decimated by a factor of 6 along both dimensions for the sake of visualization. Measurements from

the DL (red arrows) at 100 m AGL show a good agreement with estimates, with a wind speed of ≈ 5.4 m s−1.
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FIG. 3. Distribution of days in terms of valid image SNR (Sec. 4.b) in a 50 m radius around DL location

(horizontal axis) versus mean wind speed measured by the DL at 100 m AGL (vertical axis), during daytime.

Days for which time-series are presented (Fig. 6, 7, 8) are represented with a black diamond. A total of 57 days

are considered, of which 9 have less than 60% valid SNRimg and are not visible here. The 15 days having more

than 85% valid SNRimg were investigated for the statistics shown in Fig. 9.
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FIG. 4. Wind field obtained by Typhoon 3 October 2013 at 18:45:07 UTC, superimposed on the first scan

of the pair used for estimation. Wind velocity was ≈ 14 m s−1. The motion field was decimated along both

dimensions by a factor of 24. The turquoise circle represents the cone section sampled by the DL during the

VAD scan.
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FIG. 5. Wind field obtained by Typhoon 23 October 2013 at 23:32:04 UTC, superimposed on the first scan of

the pair used for estimation. The upper panel shows a close up on a vortex of radius ≈ 200 m. The motion field

was decimated along both dimensions by a factor of 6 and 12 for the top and bottom panels, respectively. The

turquoise circle represents the cone section sampled by the DL during the VAD scan.
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FIG. 6. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 23 October 2013 at 15:00 UTC (light wind case).

Light + markers are instantaneous values, darker lines are the 10-min rolling averages. The rapid change in

direction is the signature of the vortex presented in Fig. 5.
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FIG. 7. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 17 September 2013 at 15:00 UTC (moderate wind

case). Light + markers are instantaneous values, darker lines are the 10-min rolling averages.
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FIG. 8. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 9 October 2013 at 15:00 UTC (strong wind case).

Light + markers are instantaneous values, darker lines are the 10-min rolling averages.
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FIG. 9. Panels (a) and (b) are scatter plots of 10-min averaged wind components u and v measured by the DL at

100 m AGL (horizontal axis) versus estimated by Typhoon (vertical axis), combining the 15 days having > 85%

valid SNRimg during daytime (Fig. 3) – 892 points total. Panels (c) and (d) are the distribution of differences for

the same dataset.
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FIG. 10. Scatter plot of the TKE measured over 10-min intervals, by the DL at 100 m AGL (horizontal axis)

versus estimated by the proposed method (vertical axis) – 892 points total. The gray shading indicated the mean

wind speed measured over the interval. A linear regression (dashed line) gives a slope of 0.49 and offset of -0.03.
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FIG. 11. Illustration of the experimental design for the spatial validation of motion estimation vectors. Panel

(a) shows subsets of 2 consecutive PPI scans collected on 8 January 2014 by the REAL. The displayed area is

a close-up centered on the DL line-of-sight at 45◦ azimuth (dashed white line). The copper shading indicates

the intensity, in dB, of aerosol backscatter. A large aerosol feature is being advected north. Panel (b) shows the

velocity field (black arrows) estimated by Typhoon from these two scans; the vector field was decimated by a

factor of 15 along both dimensions for the sake of visualization. The color shading in the background indicates

the corresponding radial velocity. Panel (c) compares the radial velocities measured by the Doppler (black line)

and extracted from the 2-component field estimated by Typhoon (red line), along the DL line-of-sight.
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FIG. 12. Comparison of radial wind component at 45◦ azimuth and 2◦ elevation measured by the DL (top)

and estimated by proposed method (bottom), as a function of time (horizontal axis) and range (vertical axis), for

a 8-hour period starting 8 January 2014 at 17:00 UTC. Gray shading indicates missing or discarded data.
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FIG. 13. Panel (a), scatter plot of 10-min averaged radial wind component measured by the DL (horizontal

axis) versus estimated by the proposed method (vertical axis). Color indicates the range, from blue (0.5 km) to

red (3 km). Panel (b), histogram of differences. Panel (c), slope of linear regression as a function of range. Panel

(d), R2 coefficient as a function of range. Dashed red lines indicate overall slope and R2 values.
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FIG. 14. Temporal spectra for stream-wise component us (left) and cross-stream component vn (right) obtained

by Typhoon (solid lines) and the DL (dashed lines). The shadings from light to dark gray correspond to wind

speed ranges of [0;4], [4;8], and [8;12] m s-1. The dotted line represents the -2/3 slope of the inertial subrange

predicted by theory.
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FIG. 15. Slices of 2D power spectral density (top) and corresponding transfer functions (bottom), for stream-

wise component u in the streamwise (a) and cross-stream (b) directions, and cross-wise component v in the

streamwise (c) and cross-stream (d) directions. The shadings from light gray to black correspond to wind speed

ranges of [0;4], [4;8], [8;12] and [12;16] m s-1. The dotted line represents the -2/3 slope of the inertial subrange

predicted by theory.
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