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ABSTRACT

A cross-correlation algorithm optimized for application to horizontally-

scanning elastic backscatter lidar data is presented. The performance of the

algorithm was tested using synthetic and real data. Experiments where con-

ducted at 100 m AGL during convective conditions over land. Results show

that an iterative approach that dynamically reduces the block size provides

the largest performance gains. Comparisons with Doppler lidar data indicate

excellent agreement for the 10-minute mean wind velocity computed over a

set of 150 hours, with R2 correlation coefficients above 0.99 for each of the

two wind components.
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1. Introduction19

The cross-correlation algorithm is a mainstay in the field of motion estimation. It is used to20

compute the apparent motion of objects and fluid flows in the fields of robotics, navigation, medical21

imaging, and geosciences (Murray et al. 2009; Emery et al. 2003; Avants et al. 2008; Schubert et al.22

2013; Adrian and Westerweel 2011; Cheng et al. 2005; Antoine et al. 2013). In the atmospheric23

sciences, the cross-correlation algorithm has been applied to satellite imagery (Leese et al. 1971),24

radar data (Rinehart and Garvey 1978), and lidar data (Eloranta et al. 1975; Shimizu et al. 1981;25

Kolev et al. 1988). Under the primary assumption that macroscopic aerosol features are advected26

by the wind, the wind velocity can be approximated from the apparent motion of these features.27

Herein, synthetic data and real data are used to confirm the necessary sequence of steps for optimal28

retrieval of vector flow fields from image sequences made by scanning elastic backscatter lidar.29

The cross-correlation algorithm involves computing a cross-correlation function from a pair of30

images. The peak location of the cross-correlation function indicates the predominant displace-31

ment of image features. An inherent characteristic of selecting a single peak is the loss of in-32

formation that describes the true velocity field that causes the motion of features. If the velocity33

field is perfectly uniform and no features enter or leave the given interrogation window, the peak34

location of the cross-correlation function correctly represents the displacement of image features35

caused by the velocity field. However, perfectly uniform flow fields almost never occur in nature.36

In the case of non-uniform flow, loss of information is inevitable by selecting a single peak of the37

cross-correlation function. As shown by Hamada (2014), the performance of the cross-correlation38

algorithm decreases as non-uniformity of the flow field increases. Currently, very few technolo-39

gies enable the observation of two-component vector wind fields in the atmosphere. Dual-Doppler40

is one possibility (Stawiarski et al. 2013). As an alternative, we use the aerosol lidar and estimate41

3



the wind velocity field by applying the cross-correlation algorithm to pairs of elastic backscatter42

images. The lidar system used for this study is the Raman-shifted Eye-safe Aerosol Lidar (REAL)43

(Mayor and Spuler 2004; Mayor et al. 2005, 2007). A single compact Doppler lidar was used to44

validate the wind velocity fields resulting from the optimized cross-correlation algorithm applied45

to the REAL aerosol backscatter images.46

The cross-correlation approach has been a primary numerical method for determining fluid mo-47

tion in particle image velocimetry (PIV) experiments.1 In most PIV experiments, the fluid is48

deliberately seeded with very small particles that serve as robust tracers of the local flow. The49

particles are typically illuminated with a laser light plane and individual particles are discernible50

in the rapidly collected sequence of images taken by a camera. The particles do not change appre-51

ciably in shape nor brightness as they move. For low and moderate particle density experiments,52

in which the fluid between the particles is dark and does not contribute any information, the mo-53

tion of the small particles is solely relied upon for determining the motion field. As a result, the54

cross-correlation functions for PIV experiments contain sharp peaks. Furthermore, it is unlikely55

that particles straddle the edges of the interrogation window. Particles that appear or disappear56

within the time between two frames, either by moving into or out of the interrogation window, or57

into or out of the illumination plane, only contribute to incoherent variance confined to the zero58

lag of the correlation function.59

The application of the cross-correlation approach to derive air motion from atmospheric aerosol60

backscatter lidar images raises a set of issues that are not present in most PIV experiments (at least61

low-density experiments). These issues result from the time required for the lidar to collect a scan,62

the inability to discern individual particles, and the continuous range-dependent presence of image63

1Recently, optical flow methods have become an alternative. For example, Corpetti et al. (2006) applies an optical-flow scheme to study plane

turbulent mixing layer, wake of a circular cylinder, and vorticity measurement.
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intensity that is a proxy to particle concentration. In addition, temporally and spatially variable64

sources of particulate matter and changing atmospheric conditions (stability, humidity, flow speed65

and direction) pose additional challenges for the approach.66

The objective of this paper is to describe the sequence of numerical steps necessary for optimal67

retrieval of vector motion fields from sequences of scanning elastic backscatter lidar images when68

using the cross-correlation approach to motion estimation. The goal is to confirm or eliminate69

previously suggested steps, or add new steps, in order for the algorithm to obtain the set of motion70

vectors that most closely approximate the vector wind field. In general, the cross-correlation71

motion estimate is accomplished in a series of several different image processing and numerical72

steps that collectively make up an algorithm. This paper shows that the unique nature of lidar data73

influences the choices made regarding what steps should be included when applying to lidar data.74

Mayor et al. (2012) compared the results of a cross-correlation algorithm applied to scanning75

elastic backscatter aerosol lidar data to tower-mounted sonic anemometer wind measurements76

between 10 and 30 m AGL. The study shows that use of the cross-correlation algorithm for subsets77

of the full lidar scan that were 500 m × 500 m and smaller produced noisy results. However, a78

large and important part of the spectrum of atmospheric motions exist at these microscales. Thus,79

a higher spatial resolution of the wind velocity fields is desired. The algorithm used by Mayor80

et al. (2012) was functional but not optimal. It did not include the following steps: (1) the zero-81

padding to account for non-periodic images; (2) the Tukey window to reduce the undesirable82

effects of aerosol features entering and leaving the block area; (3) the multi-pass interrogation83

for iterative refinement of the motion estimation; (4) the multi-grid interrogation to improve the84

spatial resolution of the resulting flow fields; and (5) deforming the scan images to correct for the85

mean advection of aerosol features during the time required to complete one scan, as described by86

Sasano et al. (1982). According to Hamada (2014), which used synthetic lidar backscatter images87
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and wind fields, the performance of the cross-correlation algorithm is increased by steps (1), (2),88

and (3). In addition, step (4) is necessary to improve the spatial resolution of the motion estimation.89

Furthermore, step (5) is needed to prevent velocity biases associated with image distortion due90

to the time for completing scans. Thus, the hypothesis of this paper is that the wind velocity91

estimation from elastic lidar backscatter images is optimized by the 5 steps described above.92

This paper is organized as follows: Section 2 introduces the cross-correlation algorithm and93

describes the options that improve the wind velocity estimation. In Section 3, the performance of94

the cross-correlation algorithm with these options is evaluated by using synthetic lidar backscatter95

images and wind velocity fields. In Section 4, the performance of the optimized cross-correlation96

algorithm is validated by field experiments using the Doppler lidar (DL) as a reference.97

2. Application of the cross-correlation algorithm to elastic lidar backscatter images98

Scanning lidar data are collected in a spherical system with coordinates of azimuth, elevation,99

and range. The spherical data are processed and interpolated to a Cartesian grid before the cross-100

correlation algorithm is applied. This “pre-processing”, that is applied to each range-dependent101

lidar backscatter array, includes the calculation and subtraction of the raw background signal,102

multiplication of the waveform by the range-squared, conversion to decibels, and application of a103

high-pass median filter. The preprocessed data are then interpolated to a Cartesian grid. In this104

work, we define a grid with spacing of 10 m in both the east-west and north-south directions. The105

cross-correlation algorithm can then be applied to any square subset of the Cartesian array. In106

practice we often start with a 1 km by 1 km square subset containing 100 x 100 data points.107

6



a. The cross-correlation function108

The cross-correlation function (CCF) is a measure of the similarity of two arrays, as a function109

of delay (in time) or lag (in space) applied to one of them. Applied to consecutive frames from a110

sequence of images, the peak location of the CCF indicates the displacement of the image features111

within the time interval between the images. The normalized 2D cross-correlation function, rx,y,112

for two series f1(x,y) and f2(x,y) is defined as113

rx,y =
COV1,2

S1S2
, (1)

where COV1,2 is the covariance of the overlapped portions of f1(x,y) and f2(x,y), S1 is the standard114

deviation of f1(x,y), and S2 is the standard deviation of f2(x,y) (Davis and Sampson 2002).115

For computational efficiency, the fast Fourier transform (FFT) is widely used instead of the116

Eqn. (1). Let f j(xm,yn), j = 1,2 be discrete signals, Nx the number of data points in the x-117

direction, Ny the number of points in the y-direction, kx be the wavenumber corresponding to118

the x-coordinate, and ky be the wavenumber corresponding to the y-coordinate. The FFT of image119

f j(xm,yn), FFTj can be expressed as120

FFTj =
∑

Nx
m=1 ∑

Ny
n=1 f j(xm,yn)e

−i2π( kxxm
Nx +

kyyn
Ny )

NxNy
, j = 1,2, (2)

and the cross-correlation function rx,y can be expressed as121

rx,y =
FFT−1(FFT1FFT ∗2 )

S1S2
, (3)

where FFT1 is the FFT of f1(x,y), FFT ∗2 is the complex conjugate of FFT2, and FFT−1 repre-122

sents the inverse fast Fourier transform.123
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b. Zero-padding124

The FFT is designed for periodic signals, but the actual atmospheric lidar images are not peri-125

odic. Thus, it is important to circumvent the assumption of periodicity by using “zero-padded”126

images (Adrian and Westerweel 2011). Each dimension is padded by zeros over a domain that127

is at least twice the size of the original signal, so three quarters of the 2D interrogation windows128

are padded by zeros (Bastiaans 2000). The first image block is made by a subset of image at the129

lower left corner and zeros everywhere in the image block. The second image block is made by130

the subset of image at the upper right corner and zeros everywhere in the image block. The per-131

formance of a cross-correlation algorithm using synthetic backscatter images and synthetic wind132

velocity fields is increased by using zero-padded images (Hamada 2014).133

c. Histogram equalization134

Histogram equalization is an image processing technique that enhances image contrast by ad-135

justing the histogram distribution of pixel intensity. Histogram equalization has been used prior to136

computing the horizontal wind vectors from lidar backscatter images (Schols and Eloranta 1992).137

Without histogram equalization, the motion of small areas of bright features may dominate the138

computation of the cross-correlation function. In that case, the cross-correlation may be biased139

by the motion of such small and bright features. On the other hand, with histogram equalization,140

other regions in the image are able to influence the cross-correlation function and minimize the141

bias associated with the motion of the bright features. However, according to the study of Hamada142

(2014), histogram equalization tends to broaden the cross-correlation function and reduce the per-143

formance of the cross-correlation algorithm. Since that study was done based on a relatively strong144

wind case (wind speed is approximately 10 m s-1), the effects of histogram equalization should145
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be investigated for other cases in the future to determine whether it should be included prior to146

application of the cross-correlation algorithm for all situations.147

d. Tukey window148

According to the study of Hamada (2014), the performance of the cross-correlation algorithm149

decreases if bright features straddle the edges of the interrogation window. This tends to distort150

the shape of the cross-correlation function, shifts the location of its peak, and leads to an under-151

estimation of wind velocity vector. Window functions, such as Tukey window, may be applied152

to taper the backscatter intensity near the image block edges. Let N be the x-dimension of a 1D153

array. Then, the 1D Tukey window w(x) is defined as154

w(x) =


1
2(1+ cos [π( 2x

α(N−1) −1)]) : 0≤ x≤ α(N−1)
2

1 : α(N−1)
2 ≤ x≤ 1(N−1)(1− α

2 )

1
2(1+ cos [π( 2x

α(N−1) −
2
α
+1)]) : (N−1)(1− α

2 )≤ x≤ (N−1)

where α is a constant that determines the width of the cosine lobe of the window (Tukey 1967).155

It is set to 0.2 for this study. The Tukey window function w(x) can be extended to in 2D via156

multiplying by w(y) in the y-direction:157

w(x,y) = w(x)w(y) (4)

The Tukey window effectively decreases the intensity of aerosol features straddling the image158

block edges, thus reducing their undesirable effects.159

e. Multi-pass interrogation160

The cross-correlation function, for two consecutive lidar backscatter images, gathers contribu-161

tions from aerosol features that appear in both images. Because aerosol features are advected by162
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the wind, some aerosol features in the first image block may move out of the interrogation win-163

dow in the time interval between consecutive scans. During the same time, some aerosol features164

initially outside the first image block may appear in the second image block. In this case, these165

features do not contribute to the cross-correlation function, and the wind velocity estimation may166

be biased. For example, if the wind velocity field is non-uniform within an interrogation window,167

more aerosol features with lower velocity tend to remain within two consecutive image blocks,168

while those moving faster tend to disappear. In this case, the cross-correlation algorithm is biased169

and underestimates the wind velocity field in the interrogation window. A multi-pass interrogation170

Raffel (2007) can minimize such effects. This approach repeats two steps: (i) compute a dis-171

placement vector from 2 image blocks by the cross-correlation, then (ii) displace the center of the172

second block according to this vector. Each vector is an incremental refinement of the solution,173

and the process loops until the magnitude of the incremental vector falls below 1 pixel – typically,174

after 2-3 iterations. The sub-pixel location of the peak of the cross-correlation is then estimated by175

curve fitting. Finally, the solution vector is given by the sum of the incremental estimations and the176

sub-pixel location. Following this process, the displaced second block contains more features that177

also appeared in the first image block. The cross-correlation function is therefore better defined,178

and the accuracy of the motion estimation (wind velocity estimation) increases.179

f. Multi-grid interrogation180

The cross-correlation algorithm provides one wind velocity vector per interrogation window.181

The typical size of a large interrogation window, for elastic lidar backscatter images, is about 1000182

m × 1000 m which is larger than the size of most turbulent coherent structures. With a large183

window size, most microscale structures cannot be resolved although they are important meteoro-184

logical phenomena. In this case, multi-grid interrogation can be used to increase spatial resolution185
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of the wind velocity vector field. Multi-grid interrogation is similar to multi-pass interrogation ex-186

cept that the dimensions of the image blocks are reduced after each pass (Adrian and Westerweel187

2011). In general, the number of features appeared in both image blocks is decreased as the block188

size is reduced – typically, the reduction factor is 50%. However, displacing the second block189

increases the similarity of these image blocks, and makes it possible to resolve the wind velocity190

vector for a relatively small region (less than 500 m× 500 m). Mayor and Eloranta (2001) applied191

multi-pass interrogation and multi-grid interrogation but were not able to validate the resulting192

flow fields.193

g. Image deformation194

Lidar scans do not represent an instantaneous distribution of aerosol features as in a “snapshot”195

because of the time required to complete a scan. That is, during a scan some aerosol features are196

observed before other features, while all features are advected by the wind. The result is a distorted197

image relative to the ideal snapshot, and the motion estimation is biased. This problem was first198

discussed by Sasano et al. (1982) who proposed an iterative correction of image deformation. In199

this process, aerosol features that are observed before and after a reference time within a given200

scan are translated forward and backward, respectively, according to the mean wind velocity in201

the entire region of the scan. This process is repeated until the mean velocity is changed by less202

than 1%. After the image correction, the deformed scan sector approximates a snapshot of the true203

lidar backscatter distribution at the reference time, here corresponding to the middle of the scan.204

h. Quality control205

In general, the signal-to-noise ratio (SNR) of elastic backscatter data decays as one over the206

range squared. In the far range, the noise amplitude may dominate the backscatter from coherent207
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aerosol features. Applying the cross-correlation algorithm to such data can result in areas of208

spurious, random vectors. In other circumstances, the aerosol features can lead to a peak of the209

CCF whose location does not represent the actual motion. Such situations are more likely to occur210

close to the scan edges, or when high wind speeds are involved. They result in isolated spurious211

vectors, know as outliers. These two distinct sets of erroneous estimates are detected by two212

different mechanisms inspired from the PIV expertise.213

A first step consists in discarding vectors for which the value of the peak of CCF is below214

a certain threshold. This test is efficient at detecting erroneous vectors resulting from low SNR215

backscatter data, typically removing patches of vectors in the far range. The second step is handled216

once the whole vector field has been estimated. It is the normalized median test, as described217

in Adrian and Westerweel (2011). It assumes a local, spatial coherence of the vector field and218

therefore is able to detect isolated outliers that were missed by the previous test.219

For a displacement vector v, these tests can be written as:220

if rvx,vy < τr (noisy data)

or
|v−vm|
σs +σε

< τm (isolated outlier)

⇒ v discarded, (5)

where vm is the median of the 8 vectors vi neigboring v, and σs is the median of the neighboring221

residuals {|vi−vm|, i = 1, . . . ,8}. In this work, the threshold values are τr = 0.2 and τm = 2, and222

σε = 0.1. Both of these tests do not depend on the size of the blocks, and can be integrated to a223

multi-grid interrogation process. They are applied after each step of the multi-grid interrogation.224

Vectors flagged as spurious are replaced by their value at the previous step of the estimation, if225

available, and the estimation process stops. As such, the algorithm is adaptive: the estimation226

proceeds to smaller image blocks (finer motion scales) only when the quality of data is locally227

good enough to support it.228
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i. Implementation229

A simplified diagram of the operational algorithm is presented Fig. 1. It combines iterations230

of the distortion correction (Sec. 2.g), the multi-grid (Sec. 2.f) and the multi-pass estimation231

(Sec. 2.e). For each vector, there can be up to 27 iterations total (3 for each of the distortion232

correction, multi-grid and multi-pass), with as many evaluations of the CCF. In order to complete233

the execution of the motion estimation within the time between two scans of the REAL, the core234

pieces of the method (CCF, histogram equalization, interpolation for the distortion correction) are235

written in the CUDA language (Mauzey et al. 2012). These functions are executed in a massively236

parallel fashion on specific graphic processing units that are designed for scientific computation,237

thus enabling massive real-time execution.238

3. Tests using synthetic backscatter images and wind velocity fields239

Unlike other wind measurement techniques that sample relatively small volumes of the atmo-240

sphere, the cross-correlation algorithm relies upon spatial data over a large area to make a velocity241

estimate that is assigned to a single point (the location of the center of the interrogation window).242

The spatial data is the aerosol backscatter field in the interrogation window. If the actual wind243

velocity is constant throughout the interrogation window, then the spatial distribution of aerosol244

features that contribute to the cross-correlation function does not matter. However, the wind ve-245

locity in the real world is spatially variable. Therefore, it is reasonable to question whether the246

peak of the cross-correlation function represents the spatial mean of the actual wind field within247

the interrogation window. This is because the aerosol features may not be evenly distributed across248

the interrogation window.249

In order to study this problem, we developed synthetic velocity fields and synthetic aerosol250

backscatter images. The synthetic velocity fields enable us to calculate a spatial mean velocity251
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that, although is not continuously defined, is much higher resolution than can be provided by252

any observing technique. The spatial mean velocity is not currently possible to obtain in the253

real atmosphere over areas the size of the interrogation window. The synthetic backscatter field254

enables us to confirm our hypothesis that only a perfectly uniform flow field results in a perfect255

CCF displacement given a random distribution of aerosol features.256

Experiments conducted by Hamada (2014) show that it is possible for the cross-correlation al-257

gorithm to provide a velocity vector that does not match the spatial mean over the interrogation258

window. This problem becomes worse as the inhomogeneity of the velocity field increases, and es-259

pecially when the spatial distribution of coherent aerosol structures in the backscatter field is also260

inhomogeneous. The inhomogeneity of the velocity field is the result of coherent flow structures261

such as areas of convergence, divergence, shear, and vorticity with characteristic length scales of262

approximately the same size as the interrogation window. These are more likely to occur during263

periods of weak winds.264

In this section of the paper, we present results from experiments conducted with (1) synthetic265

backscatter fields which are composed of random distributions of aerosol backscatter, and (2)266

synthetic flow fields where a spatial constant mean wind was added to the turbulent perturbations.267

a. Tests for optimization of the cross-correlation algorithm268

The performance of the cross-correlation algorithm for wind velocity estimation by elastic lidar269

was evaluated by using synthetic backscatter images and synthetic wind velocity fields (Hamada270

2014). The grid spacing (δx = δy = 10 m) and the time between two consecutive lidar scans271

(δ t = 10 s) are chosen such that the motion of one unit (10 m) during a time step (10 s) represents272

a velocity of 1 m s−1.273
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As a first step, a synthetic backscatter image is created by generating a 2-D array filled with274

random numbers. The background of the atmospheric aerosol is created by applying a 25 × 25275

pixel boxcar smooth to the random numbers which corresponds to a field of coherent structures276

with characteristic length of 250 m × 250 m. Next, small Gaussian features were randomly added277

in the interrogation window to simulate local sources of aerosol features. Then, a synthetic turbu-278

lent velocity perturbation field, as generated by the model of Mann (1994, 1998) is used to diffuse279

both Gaussian features and background in the interrogation window. Figure 2 shows a synthetic280

backscatter image and a REAL backscatter image. The REAL backscatter image was extracted281

from lidar data collected at California State University, Chico, University Farm on October 17,282

2013. One pixel of the REAL backscatter image corresponds to the dimensions of 10 m × 10283

m. From Fig. 2, similar spatial gradients and backscatter intensity ranges can be observed in both284

images although the exact distributions of aerosol features are different.285

A synthetic velocity field is created by the sum of a constant flow field and a synthetic turbulent286

perturbation field. Let u(x,y) and v(x,y) be the east-west and the north-south components of the287

wind velocity, and u′(x,y), and v′(x,y) be the corresponding components of turbulent perturba-288

tions. Then the wind velocity field can be expressed as289

(u(x,y),v(x,y)) = (Cu +u′(x,y),Cv + v′(x,y)) (6)

where Cu and Cv be the corresponding components of constant flow. In this study the following 3290

cases are investigated: light wind (Cu = 1.0, and Cv = 0), moderate wind (Cu = 5.0, and Cv = 0),291

and strong wind (Cu = 10.0, and Cv = 0).292

A second image is generated by applying the velocity field and bicubic interpolation to the syn-293

thetic backscatter image to displace each pixel of the image to a new location on the Cartesian294

grid. Then, square subsets of the synthetic backscatter images (image blocks), before and after295
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displacing pixels of the image, are extracted for investigation. Next, the cross-correlation algo-296

rithm is applied to these image blocks and the velocity vector is computed. The peak location of297

the cross-correlation function is estimated by curve fitting (polynomial of degree 2), around the298

peak (5 × 5 pixels). The experiment is repeated on 100 different pairs of synthetic backscatter299

images and the mean and the standard deviation of the velocity vectors are compared with the300

mean velocity of the given synthetic wind velocity field.301

The effects of each option of the cross-correlation algorithm are investigated by 6 different con-302

ditions (tests 1, 2, 3, 4, 5, and 6) as shown in Table 1. The image correction, as described by Sasano303

et al. (1982), is not included for these tests since there is no image distortion for the synthetic lidar304

backscatter images. The five options of the cross-correlation algorithm are the multi-pass interro-305

gation (MP), the multi-grid interrogation (MG), the zero-padding (ZP), the Tukey window (TW),306

and the histogram equalization (HE). None of these options are included for test 1, but all five307

options are included for test 6. The image block size of 25×25 pixels, which corresponds to 250308

m × 250 m regions of REAL backscatter images, is chosen to evaluate the performance of the309

cross-correlation algorithm in the smallest of block sizes used in the real-time operational version310

of our algorithm.311

b. Results of tests for three cases312

Table 2 shows results for the 3 cases (light, moderate, and strong winds). The multi-pass and313

multi-grid interrogations contribute the most to the performance of the cross-correlation algorithm,314

the other options bring relatively small improvements. The histogram equalization and the Tukey315

window tend to slightly underestimate the u-component but provide better estimation of the v-316

component, making a correction of the wind-direction estimation. On the other hand, the zero-317

padding tends to reduce the underestimation of the u-component and improve the estimation of318
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the wind speed. Thus, the results suggest that the performance of the cross-correlation algorithm319

for the relatively small region is optimized by applying all 5 options. In addition, we found that the320

performance of the cross-correlation algorithm increases as the magnitude of the given velocity321

vectors decreases. It is likely related to the fact that the two consecutive synthetic backscatter322

images are more similar for lower velocity treatment.323

While the use of synthetic images and flow fields are powerful tools for testing the algorithm,324

they also have severe limitations and miss relevant physics that occur in the real world. Foremost,325

our 2D synthetic images and flow fields lack the realism of the 3D nature of aerosol and wind. In326

the real world, tilted aerosol features may pass through the scan plane resulting in false apparent327

motions. Also, in the real world, air parcels could move circuitously and not at constant velocity328

during the time between frames.329

4. Comparison with Doppler lidar wind measurements330

a. The cross-correlation applied to CHATS331

As described by Mayor et al. (2012), a rudimentary cross-correlation algorithm was applied332

to REAL data collected during the Canopy Horizontal Array Turbulence Study (CHATS, Patton333

et al. (2011)), from March to June of 2007 near Dixon, California. The REAL was located 1.61 km334

north of the National Center for Atmospheric Research (NCAR) Integrated Surface Flux Facility335

(ISFF) 30-m vertical tower. The tower was surrounded by orchard (800 m × 800 m) of walnut336

trees approximately 10-m tall. 5 Campbell Scientific CSAT3 3D sonic anemometers were located337

on the tower at 12.5, 14.0, 18.0, 23.0 and 29.0 m above ground level (AGL) to measure the wind338

velocity. The REAL scanned the atmosphere horizontally (the plan position indicator, PPI) over339
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the orchard, and the rudimentary cross-correlation algorithm was applied to estimate the wind340

velocity in a 1000 m × 1000 m region surrounding the tower.341

The REAL dataset from CHATS was groundbreaking but it had some deficiencies. In particu-342

lar, the ISFF tower and nearby trees caused hard-target reflections, creating non-stationary bright343

pixels and large shadows in the aerosol backscatter data that prevented optimal retrieval of wind344

fields by the cross-correlations. Moreover, the REAL platform settled into the soil during the345

course of the CHATS experiment and precise measurements of the pitch and roll of the instrument346

were not available. This resulted in uncertainty of the altitude of the REAL beam at the location347

of the ISS vertical tower. Given the strong speed shear with increasing altitude in the roughness348

sublayer just above the top of the canopy, Mayor et al. (2012) choose not to calculate and compare349

mean wind velocity data and instead focused on the instantaneous wind vectors resulting from the350

cross-correlation algorithm.351

In order to move forward, a new field experiment was conducted in Chico, California, from May352

of 2013 through January of 2014. Chico is 130 km north of Dixon and has less variable relative353

humidity than Dixon due to its distance from the Sacramento-San Joaquin River Delta. However,354

nearby agriculture activities and convection offer good conditions for testing. In the Chico Exper-355

iment, a Streamline Doppler lidar (from Halo Photonics) was employed as the reference system in356

order to avoid hard target reflections, it measured winds 30 - 170 m AGL. The wind measurement357

using the DL was previously validated against cup anemometers (Smith et al. 2006). The REAL358

was on firm ground and pitch and roll of the platform was recorded to ensure precise knowledge of359

the altitude of the laser beam as a function of range. Both the REAL and the DL data acquisition360

systems were time synchronized to GPS time. Since a single DL cannot retrieve a 2D 2-component361

wind velocity field, the following configurations were investigated.362
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b. Temporal validation363

The DL was located 1523 m from the REAL in the direction of 15◦ azimuth. In order to test364

the technique at the height of typical wind turbines and above the reach of typical meteorological365

towers, the DL was operated in vertical profile mode (VAD scan of radius 107 m at 100 m AGL366

and an angle 43◦ from the horizontal) to provide horizontal components of the wind velocity367

vector every 17 s. The REAL system scanned the atmosphere between -15◦ and 45◦ azimuth, at 4◦368

elevation, in about 15 s. Then, the optimized cross-correlation algorithm with all options (MP, MG,369

HE, ZP, and TW), was applied to estimate the wind velocity in an image block of the dimensions370

250 m× 250 m centered directly over the DL at the altitude of 100 m AGL. The image correction,371

as discussed by Sasano et al. (1982), was applied to all REAL backscatter images before the wind372

velocity estimation. Figures 3 and 4 show the experimental setup at the California State University,373

Chico, farm. Figure 5 shows the data density for REAL system (+) and the DL (•) within an image374

block for the cross-correlation, 250 m × 250 m, at the altitude of 100 m AGL. Both the REAL375

system and the DL estimated the wind velocity vectors every 17 s, and time series of the wind376

velocity vectors were compared.377

The quality of aerosol backscatter data depends upon the performances of the instrument and378

the state of the atmosphere. In the following, three cases featuring different wind conditions are379

presented: low, moderate and strong wind speeds. Then, a statistical analysis of 15 days that oc-380

curred in September and October of 2013 is considered. These 15 days present the highest amount381

of valid data at the DL location during daytime, while covering a broad range of wind velocities382

(0–16 m s−1) and constant to variable wind directions. Therefore, these days constitute the best383

set to analyze the performance of the algorithm while minimizing the effects of the instrument and384

atmosphere. They were selected by analyzing the “image SNR” as detailed in Dérian et al. (2015).385
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1) LIGHT WIND CASE386

Figure 6 shows time series of wind speeds and directions, as estimated by the DL (blue), and by387

the optimized cross-correlation algorithm (green) from REAL backscatter images for a 12-hour388

period starting from 23 October 2013 15:00 UTC. This is an example of a light wind case where389

the wind speed is between 0 m s-1 and 2 m s-1 and the wind direction is variable. The results show390

that the time series of both methods are very similar except a 2-hour period between 15:00 and391

17:00 UTC, where no coherent aerosol features were present. Correlation coefficients R2 for the392

10-minute averaged wind speed and direction between the optimized cross-correlation and the DL393

are, 0.829, and 0.658, respectively.394

2) MODERATE WIND CASE395

Figure 7 shows time series of wind speeds and directions, as estimated by the DL (blue), and by396

the optimized cross-correlation algorithm (green) from REAL backscatter images for a 12-hour397

period starting from 17 September 2013 15:00 UTC. Points represent the individual estimates and398

the line a 10-minute rolling average. This is an example of a moderate wind case where the wind399

speed varies between 0 m s-1 and 8 m s-1 and the wind direction is approximately constant for the400

first half of the period, but varies after 20:00 UTC. Time series of both methods are remarkably401

similar for both wind speed and direction. Correlation coefficients R2 for the 10-minute averaged402

wind speed and direction between the optimized cross-correlation and the DL are, 0.973, and403

0.938, respectively.404

3) STRONG WIND CASE405

Figure 8 shows time series of wind speeds and directions, as estimated by the DL (blue), and by406

the optimized cross-correlation algorithm (green) from REAL backscatter images for a 12-hour407
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period starting from 9 October 2013 at 15:00 UTC. Points represent the individual estimates and408

the line a 10-minute rolling average. This is an example of a strong wind case where the wind409

speed is about 10 m s-1 (up to 14 m s-1) and the wind direction is approximately constant (from the410

northwest direction). As in the moderate wind case the time series of both methods are strikingly411

similar for both wind speed and direction. Correlation coefficients R2 for the 10-minute averaged412

wind speed and direction between the optimized cross-correlation and the DL are, 0.929, and413

0.968, respectively.414

4) STATISTICAL ANALYSIS OF TEMPORAL VALIDATION415

Statistical comparisons between optimized cross-correlation and the DL are summarized in Ta-416

bles 3 and 4 for all three cases (weak, moderate and strong wind). Figure 9 presents scatter plots for417

the 10-minute means collected over 15 days (891 intervals), and corresponding statistical results418

are available in Tables 3 and 4. The scatter plots show an excellent agreement between the cross-419

correlation motion estimates and the DL measurements. This is confirmed by the R2 coefficients,420

with values of 0.993 and 0.995 for components u and v, respectively.421

The time-series of Figs. 6, 7 and 8 reveals that the wind velocities obtained from the cross-422

correlation have a lesser variability than the Doppler measurements. Figure 10 shows scatter423

plots of the turbulent kinetic energy (TKE) measured by the Doppler and the cross-correlations424

over the 891 10-minute intervals . Three sets of results are presented for the cross-correlations,425

corresponding to 3 levels of the multi-grid estimation: 1000 m × 1000 m, 500 m × 500 m and426

250 m × 250 m. In all 3 sets, the cross-correlation method underestimated the TKE. However, as427

the block size is reduced, more TKE is recovered: from ≈25% with the largest blocks to ≈39%428

with 250 m × 250 m blocks. These results highlight that smaller block sizes are able to capture429

smaller perturbations. As stated in Mayor et al. (2012), estimating directly from small block430

21



sizes leads to noisier results. With the addition of multi-pass, multi-grid and quality control, the431

proposed optimized algorithm is now able to increase the resolution of the motion field.432

c. Spatial validation433

For this phase of the experiment, the DL was located on the roof of the REAL system and oper-434

ated in fixed-beam mode pointing at 45◦ azimuth and 2◦ elevation to estimate the radial component435

of the wind velocity field at the center of the scan sector swept by the REAL. The corresponding436

radial component of the wind velocity was retrieved from the horizontal components of wind437

velocity vector estimated by optimized cross-correlation algorithm applied to REAL backscatter438

images.439

The radial components of the wind velocity vectors at 45◦ azimuth and 2◦ elevation were re-440

trieved by the optimized cross-correlation algorithm with all options (MP, MG, HE, ZP, and TW)441

applied to image blocks (250 m × 250 m) in the range between 0.5 km and 3 km from the REAL442

system. The REAL system scanned the atmosphere every 17 s (between 15◦ and 75◦ azimuth at443

2 elevation). Then the radial component of the wind vectors as a function of time and range were444

compared. This experiment was conducted in December 2013 and January 2014.445

Figure 11 shows the radial component of the wind velocity as measured by the DL and estimated446

by the optimized cross-correlation algorithm, for an 8-hour period starting 8 January 2014 at 17:00447

UTC. It suggests strong correlation of the two radial velocity fields.448

Statistics on the 10-minute mean radial velocities, computed at different ranges, are presented449

Fig. 12. These results where computed over 8-hour periods (from 17:00 to 01:00 UTC) of 8 days450

selected in December 2013 and January 2014. It shows that the R2 coefficient (panel d) remains451

above 0.97 until 1.2 km range, then decreases with the range due to the decaying SNR for both452

instruments. The scatter plot of radial velocities (panel a) indicates that the cross-correlations453
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gradually overestimate the radial velocities as the range increases. This is confirmed by the his-454

togram of velocity differences (panel b), biased towards negative values, as well as the slopes of455

linear regressions (panel c). A similar trend was found for the same dataset using a different mo-456

tion estimation method (Dérian et al. 2015). This likely indicates a slight misalignment of both457

instrument beams. A mismatch in the elevation angle would result in a difference in altitude of the458

beams that increases with the range, thus explaining the lower velocities measured by the DL.459

d. Wind velocity fields460

The 2-component wind velocity fields can be retrieved from the REAL backscatter images up461

to several km via application of the optimized cross-correlation algorithm. Figure 13 shows an462

example of a strong wind case where the wind velocity is approximately uniform up to about 4463

km from the REAL system. Figure 14 shows an example of a vortex observed from the light wind464

case (23 October, 2013). Since the radius of the vortex is about 200 m, we cannot observe such a465

structure without the use of the optimized cross-correlation algorithm.466

5. Conclusions467

This paper describes the results of a research program that utilized two very different approaches468

to characterizing and improving the performance of the cross-correlation algorithm as applied to469

elastic lidar data for remote wind estimation. The first approach, described in detail in Hamada470

(2014), involved the use of synthetic aerosol backscatter fields and synthetic turbulent velocity471

fields to conduct highly controlled numerical experiments. The synthetic test results are significant472

because they confirm that the peak of the cross-correlation function estimates the mean of the473

actual velocity field (when the flow is uniform). No other physical method to our knowledge474

exists to obtain a vector at 10 m grid spacing over a 250 x 250 m area in order to confirm the475
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hypothesis that the peak of the CCF matches the mean of the actual flow field. The synthetic test476

results were also informative in that they verify loss of precision as the flow field as the flow field477

becomes less uniform. In the future, large eddy simulations could be used refine the general theory478

supporting this method of wind estimation.479

By utilizing synthetic images and velocity fields, Hamada (2014) was able to determine the480

required steps and evaluate the significance of their impact on the resulting motion vectors. An481

operational real-time version of the optimized cross-correlation algorithm is now available for use482

with the REAL.483

The second approach involved a field experiment. When sufficient small-scale aerosol structures484

are present, the 10-min mean wind estimates from the optimized cross-correlation algorithm (for a485

single point within the scan area) match that obtained from a calibrated vertically profiling Doppler486

lidar, with correlation coefficients R2 above 0.99 for the two horizontal components. By comparing487

the variance of the non-averaged velocity components, we determined that the cross-correlation488

algorithm only results in 39% of the TKE measured by the Doppler lidar. It is important to keep489

in mind that the Doppler lidar variance is also an underestimate of the true TKE due to its pulse490

volume and scan strategy.491

The above suggests that the approach of using a horizontally scanning aerosol lidar, like the492

REAL, and motion estimation algorithms to observe the mean wind may be of value in situations493

where it is difficult or impossible to deploy a profiling Doppler lidar. Moreover, a horizontally494

scanning lidar can provide spatial wind velocity information. This may also be of interest in495

situations where the air flow may be horizontally inhomogeneous. The flow fields produced by the496

technique contain two components, which are required in order to determine both wind speed and497

direction.498
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TABLE 1. The tests of the cross-correlation algorithm using synthetic backscatter images and the velocity

fields. The five options of the cross-correlation algorithm are, the multi-pass interrogation (MP), the multi-grid

interrogation (MG), the zero-padding (ZP), the Tukey window (TW), and the histogram equalization (HE). X

and × represent that these options are turned on or off, respectively.

593

594

595

596

Options MP MG HE ZP TW

Test 1 × × × × ×

Test 2 X × × × ×

Test 3 X X × × ×

Test 4 X X X × ×

Test 5 X X X X ×

Test 6 X X X X X
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TABLE 2. The results of the tests of the cross-correlation algorithms using synthetic backscatter images for

light (top), moderate (middle), and strong (bottom) wind cases. The 2D synthetic velocity field and the test

results are expressed in (pixels / frames). The first and the second rows show the mean velocity and the standard

deviation (SD), respectively, obtained from 100 estimations.

597

598

599

600

Velocity field Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Mean (1.027, 0.002) (0.509, 0.008) (0.563, 0.008) (1.018, -0.001) (0.988, 0.001) (1.006, 0.001) (1.008, 0.002)

SD (0.282, 0.063) (0.345, 0.060) (0.192, 0.011) (0.187, 0.007) (0.004, 0.002) (0.014, 0.011)

Mean (5.811, 0.088) (3.538, -0.005) (4.282, -0.154) (5.676, -0.036) (5.648, 0.156) (5.718, 0.154) (5.608, 0.142)

SD (1.891, 1.155) (1.901, 2.202) (0.394, 0.493) (0.383, 0.165) (0.309, 0.153) (0.452, 0.191)

Mean (11.79, 0.194) (5.305, -0.134) (6.575, 0.748) (11.70, -0.672) (11.64, 0.612) (11.68, 0.766) (11.32, 0.586)

SD (6.654, 4.579) (8.139, 17.39) (0.798, 1.173) (0.795, 0.658) (0.752, 0.810) (0.498, 0.749)
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TABLE 3. Standard deviation of differences, linear regression variables (slope, offset), correlation coefficient

R2, number of points and recovery percentage w.r.t. DL reference for the 10-minute averaged wind component

u (west-east), for the 3 specific cases and the 15 days considered for the temporal validation.

601

602

603

case std dev (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.15 0.984 0.079 0.950 64 88.9

moderate 0.34 0.937 -0.06 0.971 72 100

strong 0.48 0.947 0.16 0.961 72 100

15 days 0.35 0.974 -0.05 0.993 891 99.0
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TABLE 4. Standard deviation of differences, linear regression variables (slope, offset), correlation coefficient

R2, number of points and recovery percentage w.r.t. DL reference for the 10-min averaged wind component v

(south-north), for the 3 specific cases and the 15 days considered for the temporal validation.

604

605

606

case std dev (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.33 0.504 0.020 0.458 64 88.9

moderate 0.28 0.984 0.01 0.987 72 100

strong 0.44 0.885 -0.76 0.879 72 100

15 days 0.37 0.991 0.06 0.995 891 99.0
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- for each iteration of image distortion correction

- return vector field 

- start with null velocity field

FIG. 1. Simplified diagram of the cross-correlation algorithm.
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FIG. 2. Comparison of a synthetic backscatter image (left) and a REAL backscatter image (right) The REAL

backscatter image was collected at the California State University, Chico, University Farm, on October 17, 2013.
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FIG. 3. A map showing the experimental setup at the California State University Chico, University Farm

in 2013. The yellow lines represent the University Farm border. The two red × represent the locations of the

REAL system and the Doppler lidar (DL), respectively. The blue region represents the PPI scans collected by

the REAL system for the experiment.
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FIG. 4. Vertical cross-section diagram for the 2013 Chico field experiment. The REAL scans the atmosphere

at 4◦ elevation. The DL is located 1523 m from the REAL and operated in vertical profile mode. With an

elevation angle of 43◦, the DL samples at 100 m AGL were 107 m from the center location.
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FIG. 5. Diagram of lidar data density in a 250 m× 250 m area at 100 m above the DL location. REAL aerosol

backscatter (+) and DL radial velocity measurement (•).
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FIG. 6. Time series of wind speed and direction, as estimated by the DL (blue), and by the optimized cross-

correlation algorithm (green) from REAL backscatter images for a light wind case starting at 15:00 UTC on

23 October 2013. Each (+) represents individual estimation or measurement, separated by approximately 17 s.

Solid lines represent 10-minute rolling averages.
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FIG. 7. Time series of wind speed and direction, as estimated by the DL (blue), and by the optimized cross-

correlation algorithm (green) from REAL backscatter images for a moderate wind case starting at 15:00 UTC

on 17 September 2013. Each (+) represents individual estimation or measurement, separated by approximately

17 s. Solid lines represent 10-minute rolling averages.
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FIG. 8. Time series of wind speed and direction, as estimated by the DL (blue), and by the optimized cross-

correlation algorithm (green) from REAL backscatter images for a strong wind case starting at 15:00 UTC on

9 October 2013. Each (+) represents individual estimation or measurement, separated by approximately 17 s.

Solid lines represent 10-minute rolling averages.
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FIG. 9. Scatter plots (Top) of 10-minutes averaged u- and v- components of the wind velocity estimated by the

optimized cross-correlation algorithm (vertical axis) versus that estimated by the DL at 100 m AGL (horizontal

axis), for 15 days, during daytime (891 intervals). The histogram distribution of differences for the same dataset

are shown in the bottom panels.
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FIG. 10. TKE of the cross-correlation wind estimates (vertical axis) versus Doppler wind measurements

(horizontal axis) computed from 891 10-minute intervals. The gray shading indicates the mean wind speed

measured over the interval. The 3 sets correspond to block sizes of 1000 m × 1000 m (left), 500 m × 500 m

(middle) and 250 m × 250 m (right).
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FIG. 11. Range-versus-time images of radial velocity from the DL (top) and optimized cross-correlation

algorithm applied to the REAL backscatter images (bottom), for a 8-hour period starting from 8 January 2014

at 17:00 UTC. Grey shading indicates data discarded by quality control, likely associated with the absence of

aerosol structures.
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FIG. 12. Panel (a), scatter plot of 10-minute averaged radial component of the wind velocity vector, as

estimated by the optimized cross-correlation algorithm (vertical axis) versus that estimated by the DL (horizontal

axis). Color indicates the range, from blue (0.5 km) to red (3 km). Panel (b), histogram of difference of radial

component of the wind velocity vector. Panel (c), slope of linear regression (vertical axis) as a function of range

(horizontal axis). Dashed red line indicates overall slope. Panel (d), R2 coefficient (vertical axis) as a function

of range (horizontal axis). Dashed red line indicates overall R2 value.
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FIG. 13. Wind velocity field obtained by the optimized cross-correlation algorithm (3 October 2013 at

18:45:07 UTC), superimposed on the first scan of the pair used for estimation. The blue circle represents a

circular section swept by the DL.
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FIG. 14. Wind velocity field obtained by the optimized cross-correlation algorithm (23 October 2013 at

23:32:04 UTC), superimposed on the first scan of the pair used for estimation. The blue circle represents a

circular section swept by the DL. The upper panel shows a close-up view of a vortex. The radius of the vortex is

approximately 200 m.
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