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A system with intriguing oscillatory behavior is created using small magnets fixed to the edges of
parallel rotating structures. Under certain conditions a system of two rotors will exchange velocities
repeatedly in a manner similar to many coupled-oscillator systems, but without oscillations in their
position. Simulation of a simple model consisting of two magnetic dipoles on a common axis of
rotation yields results that closely match the experimental data. © 2006 American Association of Physics
Teachers.
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I. INTRODUCTION

Geomag kits consist of a number of magnetic rods and
steel ball bearings. The bearings can be used as junctions
between the rods, allowing multiple attachments at arbitrary
angles to form geometric structures.1 The magnets are strong
enough to support fairly complex structures, even under ten-
sion, and one that particularly caught our attention was a
hanging double rotor !see Fig. 1".

The rotors are suspended at a single contact point between
hardened steel bearings, and as a result the friction is very
low. If the angular velocities of the two rotors are similar,
they will alternately exchange angular velocity. This behav-
ior is similar to that of coupled oscillators, but the velocity
oscillates rather than the position.

II. EXPERIMENTAL DATA

The Geomag coupled rotor assembly consists of 30 mag-
netic dipoles. We worked with a simpler arrangement of two
magnetic dipoles on a common axis. To measure the motion
of the dipoles, we used two PASCO rotary motion sensors
attached to a Vernier LabPro interface. We mounted a small
brass flywheel to each rotary motion sensor to increase the
rotational inertia and proportionally decrease the effect of
friction in the bearings. The magnetic dipole was supplied by
gluing a disk-shaped neodymium magnet on the axis of each
sensor, with the magnetic moment perpendicular to the axis.
Both sensors were then mounted on a stand so that the rota-
tional axes were colinear !see Fig. 2".

The data obtained by this method !see Fig. 3" clearly show
oscillatory behavior. For the data set shown, rotor 1 was
given an initial spin and rotor 2 was initially at rest. The
velocity oscillations of rotor 2 increase in magnitude as the
angular velocity of rotor 1 decreases until the system reaches
the point where the two rotors have the same angular veloc-
ity. At this time, the two begin to exchange velocities. The
decay is consistent with damping from a constant frictional
torque.2

III. THEORY AND SIMULATION

The field of a magnetic dipole in coordinate-free form is
given by3

B =
!0

4"r3 #3!m · r̂"r̂ − m$ , !1"

where m is the magnetic moment of the dipole and r̂ is a unit
vector pointing from the dipole to the point at which the field

is measured. The dipole moments are perpendicular to the
common axis of rotation, so m · r̂=0, and the magnetic field
from dipole 1 at the position of dipole 2 is

B1 = −
!0m1

4"r3 . !2"

The magnetic torque on dipole 2 due to dipole 1 is

!2 = m2 # B1 = −
!0

4"r3 !m2 # m1" . !3"

The two dipoles have the same magnitude %m%, so the mag-
nitude of the torque is

$2 = −
!0

4"r3m2 sin!%1 − %2" = I%̈2, !4"

where I is the rotational inertia. The angular acceleration is
then

%̈2 = − & sin!%1 − %2" , !5"

where

& &
!0m2

4"r3I
. !6"

To compare the model with the experimental apparatus,
we add a constant frictional torque term −b%̇ / %%̇%, and write
the equations of motion for each rotor:

%̈1 = − & sin!%2 − %1" − b
%̇1

%%̇1%
, !7a"

%̈2 = − & sin!%1 − %2" − b
%̇2

%%̇2%
. !7b"

A closed-form solution to Eq. !7" is not available, but we can
gain some insight into the problem by looking at the sum and
difference of Eqs. !7a" and !7b". We define

S & %1 + %2, !8"

D & %1 − %2. !9"

If we add and subtract Eqs. !7a" and !7b", we obtain

S̈ = − b' %̇1

%%̇1%
+

%̇2

%%̇2%
( , !10"
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D̈ = 2& sin D − b' %̇1

%%̇1%
−

%̇2

%%̇2%
( . !11"

Equation !11" with b=0 is the equation for the simple pen-
dulum, with the coordinate system rotated so that the equi-
librium position is at " instead of at 0. Hence, whatever the
behavior of the individual rotors, the difference between the

two rotors behaves similarly to a physical pendulum. Equa-
tion !10" with b=0 tells us that the total angular velocity and
thus the angular momentum is conserved. For b"0 we can
see that the angular momentum decreases in a stepwise fash-
ion: S̈=−2b if the signs of %̇1 and %̇2 are both positive, and
S̈=0 if one of %̇1 or %̇2 is negative.

Fig. 2. Apparatus used for the experimental observations. Adjusting the
spacing between the two rotors affects the strength of the interactions, but
does not qualitatively change the behavior.

Fig. 3. Experimental data. Rotor 1 was given an initial angular velocity, rotor 2 was initially at rest.

Fig. 1. Geomag coupled-rotor configuration.
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The equations of motion for this system lend themselves
to a numerical solution. We used a fourth-order Runge-Kutta
algorithm, with parameters & and b chosen to match our
experimental data to obtain the results shown in Fig. 4. The
stepwise decrease in the total angular velocity predicted by
Eq. !10" is clearly visible. We can see hints of these steps in
the sum in Fig. 3, particularly at t)25 s, although these
steps are at the limits of our experimental resolution.

IV. SUMMARY

When coupled oscillators are introduced in undergraduate
physics courses, they are usually discussed in terms of oscil-
lating positions. In the present apparatus, there is no common
restoring force and the oscillations are in the velocity, rather
than the position. The overall behavior of the system con-
tains elements similar to the behavior of other well-known
systems: damped simple harmonic motion and rotation with
friction. The apparatus exhibits a wealth of interesting be-
havior and numerous conceptual links to other systems. For
example, the factor-of-two change in the period of each rotor
at the crossover point is analogous to the change in the pe-
riod of a physical pendulum when it goes from looping

around the axis to swinging back and forth. There is also an
unexpected aspect of the theory, the stepwise decrease in the
total angular momentum, which arises because when the ro-
tors move in opposite directions, the frictional torques cancel
and there is no net change in angular momentum. This step-
wise decrease appears to be present in the experimental data.
Despite the complexity of the behavior, the system can be
modeled computationally without difficulty and the model
matches the observed behavior closely.
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Fig. 4. Computed behavior of the system, showing the angular velocity of both rotors and the total velocity.
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